These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 39156572)

  • 21. Lattice Thermal Conductivity of Monolayer InSe Calculated by Machine Learning Potential.
    Han J; Zeng Q; Chen K; Yu X; Dai J
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlocal phonon thermal transport in graphene in hydrodynamic regime.
    Luo XP; Guo YY; Yi HL
    J Phys Condens Matter; 2023 Dec; 36(11):. PubMed ID: 38061073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electric field tuned anisotropic to isotropic thermal transport transition in monolayer borophene without altering its atomic structure.
    Yang Z; Yuan K; Meng J; Hu M
    Nanoscale; 2020 Oct; 12(37):19178-19190. PubMed ID: 32926048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Orbitally driven low thermal conductivity of monolayer gallium nitride (GaN) with planar honeycomb structure: a comparative study.
    Qin Z; Qin G; Zuo X; Xiong Z; Hu M
    Nanoscale; 2017 Mar; 9(12):4295-4309. PubMed ID: 28295111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ballistic phonon transport in holey silicon.
    Lee J; Lim J; Yang P
    Nano Lett; 2015 May; 15(5):3273-9. PubMed ID: 25861026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2017 Dec; 19(47):32072-32078. PubMed ID: 29181465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonon thermal transport in ferroelectric
    Qi H; Wu C; Lu P; Liu C
    Nanotechnology; 2023 Dec; 35(8):. PubMed ID: 37963408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transient in-plane thermal transport in nanofilms with internal heating.
    Hua YC; Cao BY
    Proc Math Phys Eng Sci; 2016 Feb; 472(2186):20150811. PubMed ID: 27118903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.
    Qin G; Yan QB; Qin Z; Yue SY; Hu M; Su G
    Phys Chem Chem Phys; 2015 Feb; 17(7):4854-8. PubMed ID: 25594447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directional Phonon Suppression Function as a Tool for the Identification of Ultralow Thermal Conductivity Materials.
    Romano G; Kolpak AM
    Sci Rep; 2017 Mar; 7():44379. PubMed ID: 28338003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-principles study of thermal transport in nitrogenated holey graphene.
    Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J
    Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of High Order Phonon Scattering on the Thermal Conductivity and Its Response to Strain of a Penta-NiN
    Zhang C; Sun J; Shen Y; Kang W; Wang Q
    J Phys Chem Lett; 2022 Jun; 13(25):5734-5741. PubMed ID: 35713616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal conductivity modeling of core-shell and tubular nanowires.
    Yang R; Chen G; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1111-5. PubMed ID: 15943452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials.
    Jiang J; Lu S; Ouyang Y; Chen J
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodology Perspective of Computing Thermal Transport in Low-Dimensional Materials and Nanostructures: The Old and the New.
    Zhou Y; Fan Z; Qin G; Yang JY; Ouyang T; Hu M
    ACS Omega; 2018 Mar; 3(3):3278-3284. PubMed ID: 31458584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excellent thermoelectric properties of monolayer RbAgM (M = Se and Te): first-principles calculations.
    Gu J; Qu X
    Phys Chem Chem Phys; 2020 Nov; 22(45):26364-26371. PubMed ID: 33179657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phonon transport in Janus monolayer siblings: a comparison of 1T and 2H-ISbTe.
    Chu VH; Le TH; Pham TT; Nguyen DL
    RSC Adv; 2023 Jan; 13(7):4202-4210. PubMed ID: 36760311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diverse anisotropy of phonon transport in two-dimensional group IV-VI compounds: A comparative study.
    Qin G; Qin Z; Fang WZ; Zhang LC; Yue SY; Yan QB; Hu M; Su G
    Nanoscale; 2016 Jun; 8(21):11306-19. PubMed ID: 27189263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accessing the thermal conductivities of Sb
    Zhang P; Qin M; Zhang Z; Jin D; Liu Y; Wang Z; Lu Z; Shi J; Xiong R
    Phys Chem Chem Phys; 2023 Feb; 25(8):6164-6174. PubMed ID: 36752176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Two-dimensional layered MSi
    Shen C; Wang L; Wei D; Zhang Y; Qin G; Chen XQ; Zhang H
    Phys Chem Chem Phys; 2022 Feb; 24(5):3086-3093. PubMed ID: 35040847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.