These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 391566)

  • 1. Mutagenic DNA repair: insertion of nucleotides opposite non-coding template structures by a reversed 3'-5' exonuclease reaction? A hypothesis.
    Schroeder C
    Eur J Biochem; 1979 Dec; 102(1):291-6. PubMed ID: 391566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates.
    Villani G; Boiteux S; Radman M
    Proc Natl Acad Sci U S A; 1978 Jul; 75(7):3037-41. PubMed ID: 356043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of Escherichia coli DNA polymerase-I-associated 5' in equilibrium 3' exonuclease in excision-repair of UV-damaged DNA.
    Heyneker HL; Klenow H
    Basic Life Sci; 1975; 5A():219-23. PubMed ID: 1103828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of mutation frequency by bacteriophage T4 DNA polymerase. I. The CB120 antimutator DNA polymerase is defective in strand displacement.
    Gillin FD; Nossal NG
    J Biol Chem; 1976 Sep; 251(17):5219-24. PubMed ID: 956182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of the potent DNA polymerase III holoenzyme 3'----5' exonuclease activity by template-primer analogues.
    Griep MA; Reems JA; Franden MA; McHenry CS
    Biochemistry; 1990 Sep; 29(38):9006-14. PubMed ID: 2176842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro effects of a C4'-oxidized abasic site on DNA polymerases.
    Greenberg MM; Weledji YN; Kroeger KM; Kim J; Goodman MF
    Biochemistry; 2004 Mar; 43(9):2656-63. PubMed ID: 14992603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of an altered form of DNA polymerase I from Escherichia coli cells induced for recA/lexA functions.
    Lackey D; Krauss SW; Linn S
    Proc Natl Acad Sci U S A; 1982 Jan; 79(2):330-4. PubMed ID: 6281765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of herpes simplex virus DNA polymerase and characterization of its associated exonuclease activity.
    Knopf KW
    Eur J Biochem; 1979 Jul; 98(1):231-44. PubMed ID: 223846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of template activation by exonuclease V.
    Ferdinant FJ; Knippers R
    Eur J Biochem; 1975 Mar; 52(2):291-9. PubMed ID: 1100374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Non-canonical nucleotide exchange catalyzed by Escherichia coli DNA-polymerase I and the two-center model of the mechanism of action of this enzyme].
    Chidzhavadze ZG; Bibilashvili RSh; KraevskiÄ­ AA
    Mol Biol (Mosk); 1986; 20(5):1399-408. PubMed ID: 3534550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites: possible role in DNA damage tolerance?
    Palud A; Villani G; L'Haridon S; Querellou J; Raffin JP; Henneke G
    Mol Microbiol; 2008 Nov; 70(3):746-61. PubMed ID: 18826407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translesion DNA synthesis: polymerase response to altered nucleotides.
    Strauss BS
    Cancer Surv; 1985; 4(3):493-516. PubMed ID: 2825983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases.
    Bzymek M; Saveson CJ; Feschenko VV; Lovett ST
    J Bacteriol; 1999 Jan; 181(2):477-82. PubMed ID: 9882661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bypass and termination at apurinic sites during replication of single-stranded DNA in vitro: a model for apurinic site mutagenesis.
    Hevroni D; Livneh Z
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5046-50. PubMed ID: 3293048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations.
    Pavlov YI; Maki S; Maki H; Kunkel TA
    BMC Biol; 2004 May; 2():11. PubMed ID: 15163346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis by DNA polymerase I on bleomycin-treated deoxyribonucleic acid: a requirement for exonuclease III.
    Niwa O; Moses RE
    Biochemistry; 1981 Jan; 20(2):238-44. PubMed ID: 6162481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excision of gamma-ray damaged thymine by E. coli extracts is due to the 5'leads to 3' exonuclease associated with DNA polymerase I.
    Hariharan PV; Cerutti PA
    Biochem Biophys Res Commun; 1974 Dec; 61(3):971-6. PubMed ID: 4615713
    [No Abstract]   [Full Text] [Related]  

  • 20. Response of human REV1 to different DNA damage: preferential dCMP insertion opposite the lesion.
    Zhang Y; Wu X; Rechkoblit O; Geacintov NE; Taylor JS; Wang Z
    Nucleic Acids Res; 2002 Apr; 30(7):1630-8. PubMed ID: 11917024
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.