These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 39156715)

  • 1. (De)sodiation Mechanism of Bi
    Brennhagen A; Skurtveit A; Wragg DS; Cavallo C; Sjåstad AO; Koposov AY; Fjellvåg H
    Chem Mater; 2024 Aug; 36(15):7514-7524. PubMed ID: 39156715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the (De)sodiation Mechanisms of BiFeO
    Brennhagen A; Skautvedt C; Cavallo C; Wragg DS; Koposov AY; Sjåstad AO; Fjellvåg H
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12428-12436. PubMed ID: 38412363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Operando XRD studies on Bi
    Brennhagen A; Cavallo C; Wragg DS; Vajeeston P; Sjåstad AO; Koposov AY; Fjellvåg H
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 35078157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the Electrochemical Mechanism of High-Capacity Negative Electrode Model-System BiFeO
    Surendran A; Enale H; Thottungal A; Sarapulova A; Knapp M; Nishanthi ST; Dixon D; Bhaskar A
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7856-7868. PubMed ID: 35107246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile and Scalable Development of High-Performance Carbon-Free Tin-Based Anodes for Sodium-Ion Batteries.
    Gandharapu P; Das A; Tripathi R; Srihari V; Poswal HK; Mukhopadhyay A
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37504-37516. PubMed ID: 37506223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insight into Desodiation/Sodiation Mechanism of MoS
    Wang K; Hua W; Li Z; Wang Q; Kübel C; Mu X
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40481-40488. PubMed ID: 34470102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.
    Allan PK; Griffin JM; Darwiche A; Borkiewicz OJ; Wiaderek KM; Chapman KW; Morris AJ; Chupas PJ; Monconduit L; Grey CP
    J Am Chem Soc; 2016 Feb; 138(7):2352-65. PubMed ID: 26824406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in Electrochemical Mechanism of SnO
    Dixon D; Ávila M; Ehrenberg H; Bhaskar A
    ACS Omega; 2019 Jun; 4(6):9731-9738. PubMed ID: 31460063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Structures of Specific Sodium Ion Battery Components Determined by Operando Pair Distribution Function and X-ray Diffraction Computed Tomography.
    Sottmann J; Di Michiel M; Fjellvåg H; Malavasi L; Margadonna S; Vajeeston P; Vaughan GBM; Wragg DS
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11385-11389. PubMed ID: 28650527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodiation and Desodiation via Helical Phosphorus Intermediates in High-Capacity Anodes for Sodium-Ion Batteries.
    Marbella LE; Evans ML; Groh MF; Nelson J; Griffith KJ; Morris AJ; Grey CP
    J Am Chem Soc; 2018 Jun; 140(25):7994-8004. PubMed ID: 29916704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the Reaction Mechanism during Li Uptake and Release of Nanosized "NiFeMnO
    Permien S; Hansen AL; van Dinter J; Indris S; Neubüser G; Kienle L; Doyle S; Mangold S; Bensch W
    ACS Omega; 2019 Jan; 4(1):2398-2409. PubMed ID: 31459478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Dealloying Synthetic Strategy for Nanoporous Bismuth-Antimony Anodes for Sodium Ion Batteries.
    Gao H; Niu J; Zhang C; Peng Z; Zhang Z
    ACS Nano; 2018 Apr; 12(4):3568-3577. PubMed ID: 29608846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring Redox Processes in Lithium-Ion Batteries by Laboratory-Scale Operando X-ray Emission Spectroscopy.
    Krishnan A; Lee DC; Slagle I; Ahsan S; Mitra S; Read E; Alamgir FM
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16096-16105. PubMed ID: 38502716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.
    Jung SC; Jung DS; Choi JW; Han YK
    J Phys Chem Lett; 2014 Apr; 5(7):1283-8. PubMed ID: 26274485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Structural Transformations in a Series of Zero-Strain Lithium-Ion Battery Materials: Almost Simultaneous
    Mukai K; Uyama T; Nonaka T
    Inorg Chem; 2023 Apr; 62(14):5602-5613. PubMed ID: 36976710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Stable, High-Capacity Anode Material for Sodium-Ion Batteries: Taking a Closer Look at CrPS
    van Dinter J; Indris S; Bitter A; Grantz D; Cibin G; Etter M; Bensch W
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54936-54950. PubMed ID: 34756017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the Conversion Reaction of CoMnFeO4 Nanoparticles in Lithium Ion Battery Anode via Operando Studies.
    Permien S; Indris S; Hansen AL; Scheuermann M; Zahn D; Schürmann U; Neubüser G; Kienle L; Yegudin E; Bensch W
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15320-32. PubMed ID: 27219129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable Fabrication of Core-Shell Sb@Co(OH)
    Zhang Y; Gao H; Niu J; Ma W; Shi Y; Song M; Peng Z; Zhang Z
    ACS Nano; 2018 Nov; 12(11):11678-11688. PubMed ID: 30376628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of the Superior Electrochemical Performance of Amorphous-Phase Conversion-Reaction-Based Electrode Materials for Na-Ion Batteries: Formation of a Bicontinuous Metal Network.
    Kim TH; Shin J; Lee KS; Cho E
    ACS Appl Mater Interfaces; 2020 May; 12(20):22721-22729. PubMed ID: 32275816
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Karlsen MA; Billet J; Tao S; Van Driessche I; Billinge SJL; Ravnsbæk DB
    J Appl Crystallogr; 2024 Aug; 57(Pt 4):1171-1183. PubMed ID: 39108814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.