These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39157092)

  • 1. Churning-Motion-Assisted Bubble Removal: A Low-Cost Approach for Enhancing PDMS Mixture Quality.
    Kanjirakat A; Mani NK; Fernandes DV
    ACS Omega; 2024 Aug; 9(32):35080-35087. PubMed ID: 39157092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallization mechanisms in cream during ripening and initial butter churning.
    Buldo P; Kirkensgaard JJK; Wiking L
    J Dairy Sci; 2013; 96(11):6782-6791. PubMed ID: 24035028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble removal with the use of a vacuum pressure generated by a converging-diverging nozzle.
    Christoforidis T; Ng C; Eddington DT
    Biomed Microdevices; 2017 Sep; 19(3):58. PubMed ID: 28646280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air-Stable Aerophobic Polydimethylsiloxane Tube with Efficient Self-Removal of Air Bubbles.
    Park J; Woo S; Kim S; Kim M; Hwang W
    ACS Omega; 2019 Nov; 4(19):18304-18311. PubMed ID: 31720531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D microfabrication by applying the laser-induced bubble method to the thermoset polymer PDMS using a conventional nanosecond laser.
    Toba Y; Hanada Y
    Opt Lett; 2022 Dec; 47(24):6436-6439. PubMed ID: 36538456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DIY Fabrication Approach of Stretchable Sensors Using Carbon Nano Tube Powder for Wearable Device.
    Wiranata A; Ohsugi Y; Minaminosono A; Mao Z; Kurata H; Hosoya N; Maeda S
    Front Robot AI; 2021; 8():773056. PubMed ID: 34859060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete Prevention of Bubbles in a PDMS-Based Digital PCR Chip with a Multifunction Cavity.
    Gao S; Xu T; Wu L; Zhu X; Wang X; Chen Y; Li G; Li X
    Biosensors (Basel); 2024 Feb; 14(3):. PubMed ID: 38534221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment.
    Bartali R; Lamberti A; Bianco S; Pirri CF; Tripathi M; Gottardi G; Speranza G; Iacob E; Pugno N; Laidani N
    Langmuir; 2017 Nov; 33(45):12865-12872. PubMed ID: 29043815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.
    Burger S; Schulz M; von Stetten F; Zengerle R; Paust N
    Lab Chip; 2016 Jan; 16(2):261-8. PubMed ID: 26607320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting dynamics of polydimethylsiloxane mixtures on a poly(ethylene terephthalate) fiber.
    Zhang Y; Vandaele A; Seveno D; De Coninck J
    J Colloid Interface Sci; 2018 Sep; 525():243-250. PubMed ID: 29705594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Scalable, Modular Degasser for Passive In-Line Removal of Bubbles from Biomicrofluidic Devices.
    Musgrove HB; Saleheen A; Zatorski JM; Arneja A; Luckey CJ; Pompano RR
    Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study of the dynamics of two interacting bubbles in a megasonic field.
    Ochiai N; Ishimoto J
    Ultrason Sonochem; 2015 Sep; 26():351-360. PubMed ID: 25892462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Air Bubble Inclusion on Polyurethane Reaction Kinetics.
    Brondi C; Santiago-Calvo M; Di Maio E; Rodríguez-Perez MÁ
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the Dynamics of Cavitation Bubbles in a Microfluidic Channel with Actuations.
    Shang X; Huang X
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active liquid degassing in microfluidic systems.
    Karlsson JM; Gazin M; Laakso S; Haraldsson T; Malhotra-Kumar S; Mäki M; Goossens H; van der Wijngaart W
    Lab Chip; 2013 Nov; 13(22):4366-73. PubMed ID: 24056885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An acoustofluidic micromixer via bubble inception and cavitation from microchannel sidewalls.
    Ozcelik A; Ahmed D; Xie Y; Nama N; Qu Z; Nawaz AA; Huang TJ
    Anal Chem; 2014 May; 86(10):5083-8. PubMed ID: 24754496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Highly Sensitive Capacitive Pressure Sensors Using a Bubble-Popping PDMS.
    Jang Y; Jo J; Lee SH; Kim I; Lee TM; Woo K; Kwon S; Kim H
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of scalable PDMS gas-entrapping microstructures on the dynamics of a single cavitation bubble.
    Robles V; Gonzalez-Parra JC; Cuando-Espitia N; Aguilar G
    Sci Rep; 2022 Nov; 12(1):20379. PubMed ID: 36437305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the Physical, Mechanical, and Tribological Properties of PDMS Thin Films Based on Different Curing Conditions.
    Kim GM; Lee SJ; Kim CL
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.