These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39157093)

  • 1. Chemical Structure Evolution of Thermally Altered Coal during the Preparation of Coal-Based Graphene and Division of Thermally Altered Zone: Based on FTIR and Raman.
    Li R; Tang Y; Song X; Wang S; Che Q; Chen C
    ACS Omega; 2024 Aug; 9(32):34397-34412. PubMed ID: 39157093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Temperature on Molecular Structure of Medium-Rank Coal via Fourier Transform Infrared Spectroscopy.
    Wu M; Qin Y; Qin Y; Xu N; Feng L
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advantages of Structure and Electrochemical Properties of Graphene Prepared from Tectonically Deformed Coal.
    Zhang H; Zhang Y; Li J; Ma Z
    ACS Omega; 2023 Jul; 8(28):25142-25154. PubMed ID: 37483208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petrologic Characteristics and Chemical Structures of Macerals in a Suite of Thermally Altered Coals by Confocal Raman.
    Chen H; Wang S; Deng J; Zhang X; Liu Y; Li X
    ACS Omega; 2021 Dec; 6(49):33409-33418. PubMed ID: 34926890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Occurrence Difference of Functional Groups in Coals with Different Metamorphic Degrees.
    Jia J; Xing Y; Li B; Zhao D; Wu Y; Chen Y; Wang D
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal.
    Luo H; Liang W; Wei C; Wu D; Gao X; Hu G
    Molecules; 2022 Jun; 27(12):. PubMed ID: 35744935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Nanostructure Evolution in Coal Molecules of Different Ranks.
    Meng J; Zhong R; Niu J; Li S; Nie B
    J Nanosci Nanotechnol; 2021 Jan; 21(1):405-421. PubMed ID: 33213640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of carbon residues structures on burnout characteristic by FTIR and Raman spectroscopy.
    Liu Y; Sun B; Tajcmanova L; Liu C; Wu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120947. PubMed ID: 35144080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characterization of hydrogen peroxide-oxidized anthracites by X-ray diffraction, fourier transform infrared spectroscopy, and Raman spectra.
    Zhang Y; Kang X; Tan J; Frost RL
    Appl Spectrosc; 2014; 68(7):749-57. PubMed ID: 25014841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China.
    Chen S; Wu D; Liu G; Sun R
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():31-39. PubMed ID: 27470187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro-FTIR.
    Chen Y; Caro LD; Mastalerz M; Schimmelmann A; Blandón A
    J Microsc; 2013 Jan; 249(1):69-81. PubMed ID: 23170999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study on the effect of cold soaking with liquid nitrogen on the coal chemical and microstructural characteristics.
    Liu S; Li X
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):36080-36097. PubMed ID: 36542286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of magma intrusion on coal geochemical characteristics: a case study of Tiefa Daxing coal mine.
    Fu X; Liu X; Wu Q; Xiao B; Fan C
    Sci Rep; 2024 Mar; 14(1):7396. PubMed ID: 38548839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the microstructure of the symbiosis of coal-based graphene and coal-based graphene quantum dots: preparation and characterization.
    Li R; Tang Y; Che Q; Huan X; Ma P; Luo P; Mao X
    Nanotechnology; 2022 Aug; 33(45):. PubMed ID: 35976804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Functional Groups in Coal with Different Vitrinite/Inertinite Ratios on Pyrolysis Products.
    Wang A; Huang J; Zhao M; Liu Y; Cao D; Wei Y; Wei L
    ACS Omega; 2023 May; 8(20):18202-18211. PubMed ID: 37251182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Tetrahydrofuran Extraction on Surface Functional Groups of Coking Coal and Its Wettability.
    Yao J; Ji H; Lu H; Gao T
    J Anal Methods Chem; 2019; 2019():1285462. PubMed ID: 31346488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM.
    Li K; Liu Q; Cheng H; Hu M; Zhang S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119286. PubMed ID: 33340959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the Variations of Key Groups and Thermal Characteristic Parameters during Coal Secondary Spontaneous Combustion.
    Guo J; Zhang T; Pan H
    ACS Omega; 2023 Jan; 8(4):4176-4186. PubMed ID: 36743016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental research on the influence of acid on the chemical and pore structure evolution characteristics of Wenjiaba tectonic coal.
    Li X; Li X; Xu E; Xie H; Sui H; Cai J; He Y
    PLoS One; 2024; 19(4):e0301923. PubMed ID: 38652724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanopore Structure of Different Rank Coals and Its Quantitative Characterization.
    Li X; Li Z; Zhang F; Zhang Q; Nie B; Meng Y
    J Nanosci Nanotechnol; 2021 Jan; 21(1):22-42. PubMed ID: 33213611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.