BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 3915777)

  • 1. DNA precursor pools and ribonucleotide reductase activity: distribution between the nucleus and cytoplasm of mammalian cells.
    Leeds JM; Slabaugh MB; Mathews CK
    Mol Cell Biol; 1985 Dec; 5(12):3443-50. PubMed ID: 3915777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribonucleotide reductase and deoxyribonucleotide pools.
    Reichard P
    Basic Life Sci; 1985; 31():33-45. PubMed ID: 3888178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of deoxyribonucleoside triphosphate pool sizes in ribonucleotide reductase cDNA transfected human KB cells.
    Zhou BS; Ker R; Ho R; Yu J; Zhao YR; Shih J; Yen Y
    Biochem Pharmacol; 1998 May; 55(10):1657-65. PubMed ID: 9634002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell cycle-dependent variations in deoxyribonucleotide metabolism among Chinese hamster cell lines bearing the Thy- mutator phenotype.
    Mun BJ; Mathews CK
    Mol Cell Biol; 1991 Jan; 11(1):20-6. PubMed ID: 1986219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-sensitive DNA mutant of Chinese hamster ovary cells with a thermolabile ribonucleotide reductase activity.
    Wojcik BE; Dermody JJ; Ozer HL; Mun B; Mathews CK
    Mol Cell Biol; 1990 Nov; 10(11):5688-99. PubMed ID: 2233712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in deoxynucleoside triphosphate pools induced by inhibitors and modulators of ribonucleotide reductase.
    Fox RM
    Pharmacol Ther; 1985; 30(1):31-42. PubMed ID: 3915820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxyribonucleotide metabolism in cycling and resting human fibroblasts with a missense mutation in p53R2, a subunit of ribonucleotide reductase.
    Pontarin G; Ferraro P; Rampazzo C; Kollberg G; Holme E; Reichard P; Bianchi V
    J Biol Chem; 2011 Apr; 286(13):11132-40. PubMed ID: 21297166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxyribonucleotide metabolism and cyclic AMP resistance in hydroxyurea-resistant S49 T-lymphoma cells.
    Albert DA; Gudas LJ; Nodzenski E
    J Cell Physiol; 1987 Feb; 130(2):262-9. PubMed ID: 3029148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleotide reductase activity and deoxyribonucleoside triphosphate metabolism during the cell cycle of S49 wild-type and mutant mouse T-lymphoma cells.
    Albert DA; Gudas LJ
    J Biol Chem; 1985 Jan; 260(1):679-84. PubMed ID: 2981227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells.
    Håkansson P; Hofer A; Thelander L
    J Biol Chem; 2006 Mar; 281(12):7834-41. PubMed ID: 16436374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromodeoxyuridine mutagenesis, ribonucleotide reductase activity, and deoxyribonucleotide pools in hydroxyurea-resistant mutants.
    Ashman CR; Reddy GP; Davidson RL
    Somatic Cell Genet; 1981 Nov; 7(6):751-68. PubMed ID: 7034251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection and characterization of mutant S49 T-lymphoma cell lines resistant to phosphonoformic acid: evidence for inhibition of ribonucleotide reductase.
    Albert DA; Gudas LJ
    J Cell Physiol; 1986 May; 127(2):281-7. PubMed ID: 2939095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly mutagenic and severely imbalanced dNTP pools can escape detection by the S-phase checkpoint.
    Kumar D; Viberg J; Nilsson AK; Chabes A
    Nucleic Acids Res; 2010 Jul; 38(12):3975-83. PubMed ID: 20215435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells.
    Franzolin E; Pontarin G; Rampazzo C; Miazzi C; Ferraro P; Palumbo E; Reichard P; Bianchi V
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14272-7. PubMed ID: 23858451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli.
    Wheeler LJ; Rajagopal I; Mathews CK
    DNA Repair (Amst); 2005 Dec; 4(12):1450-6. PubMed ID: 16207537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxyribonucleoside triphosphate pools in human diploid fibroblasts and their modulation by hydroxyurea and deoxynucleosides.
    Snyder RD
    Biochem Pharmacol; 1984 May; 33(9):1515-8. PubMed ID: 6732868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the Bacterial Cell Cycle and Cell Size by Titrating the Expression of Ribonucleotide Reductase.
    Zhu M; Dai X; Guo W; Ge Z; Yang M; Wang H; Wang YP
    mBio; 2017 Nov; 8(6):. PubMed ID: 29138305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the salvage pathway of deoxynucleotides synthesis in apoptosis induced by growth factor deprivation.
    Oliver FJ; Collins MK; López-Rivas A
    Biochem J; 1996 Jun; 316 ( Pt 2)(Pt 2):421-5. PubMed ID: 8687383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of nucleotide pools in mammalian cells.
    Bjursell G; Skoog L
    Antibiot Chemother (1971); 1980; 28():78-85. PubMed ID: 6251748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deoxyribonucleotide pools in mouse-fibroblast cell lines with altered ribonucleotide reductase.
    Meuth M; Aufreiter E; Reichard P
    Eur J Biochem; 1976 Dec; 71(1):39-43. PubMed ID: 1087605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.