These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 3915780)

  • 41. Mutational analysis of a yeast transcriptional terminator.
    Osborne BI; Guarente L
    Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4097-101. PubMed ID: 2657739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen-dependent upstream activation sites of Saccharomyces cerevisiae cytochrome c genes are related forms of the same sequence.
    Cerdan ME; Zitomer RS
    Mol Cell Biol; 1988 Jun; 8(6):2275-9. PubMed ID: 2841577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The expression in yeast of the Escherichia coli galK gene on CYC1::galK fusion plasmids.
    Rymond BC; Zitomer RS; Schümperli D; Rosenberg M
    Gene; 1983 Nov; 25(2-3):249-62. PubMed ID: 6198241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Saccharomyces cerevisiae HSP70 heat shock elements are functionally distinct.
    Young MR; Craig EA
    Mol Cell Biol; 1993 Sep; 13(9):5637-46. PubMed ID: 8355706
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strand-specificity in the transformation of yeast with synthetic oligonucleotides.
    Yamamoto T; Moerschell RP; Wakem LP; Komar-Panicucci S; Sherman F
    Genetics; 1992 Aug; 131(4):811-9. PubMed ID: 1325385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repair of specific base pair mismatches formed during meiotic recombination in the yeast Saccharomyces cerevisiae.
    Detloff P; Sieber J; Petes TD
    Mol Cell Biol; 1991 Feb; 11(2):737-45. PubMed ID: 1990280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coupling termination of transcription to messenger RNA maturation in yeast.
    Birse CE; Minvielle-Sebastia L; Lee BA; Keller W; Proudfoot NJ
    Science; 1998 Apr; 280(5361):298-301. PubMed ID: 9535662
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs.
    Hamilton R; Watanabe CK; de Boer HA
    Nucleic Acids Res; 1987 Apr; 15(8):3581-93. PubMed ID: 3554144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential regulation of the duplicated isocytochrome c genes in yeast.
    Laz TM; Pietras DF; Sherman F
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4475-9. PubMed ID: 6087325
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for a heat shock transcription factor-independent mechanism for heat shock induction of transcription in Saccharomyces cerevisiae.
    Kobayashi N; McEntee K
    Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6550-4. PubMed ID: 2118651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The actin gene in yeast Saccharomyces cerevisiae: 5' and 3' end mapping, flanking and putative regulatory sequences.
    Gallwitz D; Perrin F; Seidel R
    Nucleic Acids Res; 1981 Dec; 9(23):6339-50. PubMed ID: 6275358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RNA processing generates the mature 3' end of yeast CYC1 messenger RNA in vitro.
    Butler JS; Platt T
    Science; 1988 Dec; 242(4883):1270-4. PubMed ID: 2848317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae.
    Heidmann S; Schindewolf C; Stumpf G; Domdey H
    Mol Cell Biol; 1994 Jul; 14(7):4633-42. PubMed ID: 7911972
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mutational analysis of upstream activation sequence 2 of the CYC1 gene of Saccharomyces cerevisiae: a HAP2-HAP3-responsive site.
    Forsburg SL; Guarente L
    Mol Cell Biol; 1988 Feb; 8(2):647-54. PubMed ID: 2832731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. RNA-DNA sequence differences in Saccharomyces cerevisiae.
    Wang IX; Grunseich C; Chung YG; Kwak H; Ramrattan G; Zhu Z; Cheung VG
    Genome Res; 2016 Nov; 26(11):1544-1554. PubMed ID: 27638543
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of an upstream activation sequence and other cis-acting elements required for transcription of COX6 from Saccharomyces cerevisiae.
    Trawick JD; Rogness C; Poyton RO
    Mol Cell Biol; 1989 Dec; 9(12):5350-8. PubMed ID: 2555697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of a DNA segment that is necessary and sufficient for alpha-specific gene control in Saccharomyces cerevisiae: implications for regulation of alpha-specific and a-specific genes.
    Jarvis EE; Hagen DC; Sprague GF
    Mol Cell Biol; 1988 Jan; 8(1):309-20. PubMed ID: 3275872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Translation-initiation promoting site on transcripts of highly expressed genes from Saccharomyces cerevisiae and the role of hairpin stems to position the site near the initiation codon.
    Thanaraj TA; Pandit MW
    J Biomol Struct Dyn; 1990 Jun; 7(6):1279-89. PubMed ID: 2194497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene products that promote mRNA turnover in Saccharomyces cerevisiae.
    Leeds P; Wood JM; Lee BS; Culbertson MR
    Mol Cell Biol; 1992 May; 12(5):2165-77. PubMed ID: 1569946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae.
    Heidmann S; Obermaier B; Vogel K; Domdey H
    Mol Cell Biol; 1992 Sep; 12(9):4215-29. PubMed ID: 1508215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.