These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 39158048)

  • 1. CuGBasis: High-performance CUDA/Python library for efficient computation of quantum chemistry density-based descriptors for larger systems.
    Tehrani A; Richer M; Heidar-Zadeh F
    J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39158048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics.
    Ayres DL; Cummings MP; Baele G; Darling AE; Lewis PO; Swofford DL; Huelsenbeck JP; Lemey P; Rambaut A; Suchard MA
    Syst Biol; 2019 Nov; 68(6):1052-1061. PubMed ID: 31034053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPU algorithms for density matrix methods on MOPAC: linear scaling electronic structure calculations for large molecular systems.
    Maia JDC; Dos Anjos Formiga Cabral L; Rocha GB
    J Mol Model; 2020 Oct; 26(11):313. PubMed ID: 33090341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psi4 1.4: Open-source software for high-throughput quantum chemistry.
    Smith DGA; Burns LA; Simmonett AC; Parrish RM; Schieber MC; Galvelis R; Kraus P; Kruse H; Di Remigio R; Alenaizan A; James AM; Lehtola S; Misiewicz JP; Scheurer M; Shaw RA; Schriber JB; Xie Y; Glick ZL; Sirianni DA; O'Brien JS; Waldrop JM; Kumar A; Hohenstein EG; Pritchard BP; Brooks BR; Schaefer HF; Sokolov AY; Patkowski K; DePrince AE; Bozkaya U; King RA; Evangelista FA; Turney JM; Crawford TD; Sherrill CD
    J Chem Phys; 2020 May; 152(18):184108. PubMed ID: 32414239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU accelerated implementation of NCI calculations using promolecular density.
    Rubez G; Etancelin JM; Vigouroux X; Krajecki M; Boisson JC; Hénon E
    J Comput Chem; 2017 May; 38(14):1071-1083. PubMed ID: 28342203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Scale Document Inversion using a Multi-threaded Computing System.
    Jung S; Chang DJ; Park JW
    ACM SIGAPP Appl Comput Rev; 2017 Jun; 17(2):27-35. PubMed ID: 29861701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-world comparison of CPU and GPU implementations of SNPrank: a network analysis tool for GWAS.
    Davis NA; Pandey A; McKinney BA
    Bioinformatics; 2011 Jan; 27(2):284-5. PubMed ID: 21115438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiempirical Quantum Chemical Calculations Accelerated on a Hybrid Multicore CPU-GPU Computing Platform.
    Wu X; Koslowski A; Thiel W
    J Chem Theory Comput; 2012 Jul; 8(7):2272-81. PubMed ID: 26588960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPUPeP: Parallel Enzymatic Numerical P System simulator with a Python-based interface.
    Raghavan S; Rai SS; Rohit MP; Chandrasekaran K
    Biosystems; 2020 Oct; 196():104186. PubMed ID: 32535178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating Spatial Cross-Matching on CPU-GPU Hybrid Platform With CUDA and OpenACC.
    Baig F; Gao C; Teng D; Kong J; Wang F
    Front Big Data; 2020 May; 3():. PubMed ID: 32954255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydra image processor: 5-D GPU image analysis library with MATLAB and python wrappers.
    Wait E; Winter M; Cohen AR
    Bioinformatics; 2019 Dec; 35(24):5393-5395. PubMed ID: 31240306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GPU accelerated chemical similarity calculation for compound library comparison.
    Ma C; Wang L; Xie XQ
    J Chem Inf Model; 2011 Jul; 51(7):1521-7. PubMed ID: 21692447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
    Cui JY; Pratx G; Prevrhal S; Levin CS
    Med Phys; 2011 Dec; 38(12):6775-86. PubMed ID: 22149859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PyGeNN: A Python Library for GPU-Enhanced Neural Networks.
    Knight JC; Komissarov A; Nowotny T
    Front Neuroinform; 2021; 15():659005. PubMed ID: 33967731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive framework of GPU-accelerated image reconstruction for photoacoustic computed tomography.
    Wang Y; Li C
    J Biomed Opt; 2024 Jun; 29(6):066006. PubMed ID: 38846677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.
    Warris S; Timal NRN; Kempenaar M; Poortinga AM; van de Geest H; Varbanescu AL; Nap JP
    PLoS One; 2018; 13(1):e0190279. PubMed ID: 29293576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-scale neural circuit mapping data analysis accelerated with the graphical processing unit (GPU).
    Shi Y; Veidenbaum AV; Nicolau A; Xu X
    J Neurosci Methods; 2015 Jan; 239():1-10. PubMed ID: 25277633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPU accelerated biochemical network simulation.
    Zhou Y; Liepe J; Sheng X; Stumpf MP; Barnes C
    Bioinformatics; 2011 Mar; 27(6):874-6. PubMed ID: 21224286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines.
    Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K
    Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.