These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 39158113)
1. Enhanced nitrous oxide emission factors due to climate change increase the mitigation challenge in the agricultural sector. Li L; Lu C; Winiwarter W; Tian H; Canadell JG; Ito A; Jain AK; Kou-Giesbrecht S; Pan S; Pan N; Shi H; Sun Q; Vuichard N; Ye S; Zaehle S; Zhu Q Glob Chang Biol; 2024 Aug; 30(8):e17472. PubMed ID: 39158113 [TBL] [Abstract][Full Text] [Related]
2. Data-driven estimates of fertilizer-induced soil NH Ma R; Yu K; Xiao S; Liu S; Ciais P; Zou J Glob Chang Biol; 2022 Feb; 28(3):1008-1022. PubMed ID: 34738298 [TBL] [Abstract][Full Text] [Related]
3. Reevaluating the Drivers of Fertilizer-Induced N Ge X; Xie D; Mulder J; Duan L Environ Sci Technol; 2024 Sep; 58(35):15672-15680. PubMed ID: 39163138 [TBL] [Abstract][Full Text] [Related]
4. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771 [TBL] [Abstract][Full Text] [Related]
5. Nitrous oxide emissions from China's croplands based on regional and crop-specific emission factors deviate from IPCC 2006 estimates. Aliyu G; Luo J; Di HJ; Lindsey S; Liu D; Yuan J; Chen Z; Lin Y; He T; Zaman M; Ding W Sci Total Environ; 2019 Jun; 669():547-558. PubMed ID: 30889444 [TBL] [Abstract][Full Text] [Related]
6. Review and analysis of global agricultural N₂O emissions relevant to the UK. Buckingham S; Anthony S; Bellamy PH; Cardenas LM; Higgins S; McGeough K; Topp CF Sci Total Environ; 2014 Jul; 487():164-72. PubMed ID: 24784741 [TBL] [Abstract][Full Text] [Related]
7. Model comparison and quantification of nitrous oxide emission and mitigation potential from maize and wheat fields at a global scale. Tesfaye K; Takele R; Sapkota TB; Khatri-Chhetri A; Solomon D; Stirling C; Albanito F Sci Total Environ; 2021 Aug; 782():146696. PubMed ID: 33838384 [TBL] [Abstract][Full Text] [Related]
8. Intermediate soil acidification induces highest nitrous oxide emissions. Qiu Y; Zhang Y; Zhang K; Xu X; Zhao Y; Bai T; Zhao Y; Wang H; Sheng X; Bloszies S; Gillespie CJ; He T; Wang Y; Chen H; Guo L; Song H; Ye C; Wang Y; Woodley A; Guo J; Cheng L; Bai Y; Zhu Y; Hallin S; Firestone MK; Hu S Nat Commun; 2024 Mar; 15(1):2695. PubMed ID: 38538640 [TBL] [Abstract][Full Text] [Related]
9. Modeling nitrous oxide emissions from digestate and slurry applied to three agricultural soils in the United Kingdom: Fluxes and emission factors. Shen J; Treu R; Wang J; Nicholson F; Bhogal A; Thorman R Environ Pollut; 2018 Dec; 243(Pt B):1952-1965. PubMed ID: 30318134 [TBL] [Abstract][Full Text] [Related]
10. Nitrous oxide emissions in Chinese vegetable systems: A meta-analysis. Wang X; Zou C; Gao X; Guan X; Zhang W; Zhang Y; Shi X; Chen X Environ Pollut; 2018 Aug; 239():375-383. PubMed ID: 29674216 [TBL] [Abstract][Full Text] [Related]
11. Long-term variability in N Baral KR; Jayasundara S; Brown SE; Wagner-Riddle C Sci Total Environ; 2022 Apr; 815():152744. PubMed ID: 34979225 [TBL] [Abstract][Full Text] [Related]
12. Global direct nitrous oxide emissions from the bioenergy crop sugarcane (Saccharum spp. inter-specific hybrids). Yang L; Deng Y; Wang X; Zhang W; Shi X; Chen X; Lakshmanan P; Zhang F Sci Total Environ; 2021 Jan; 752():141795. PubMed ID: 32892043 [TBL] [Abstract][Full Text] [Related]
13. Impacts assessment of nitrification inhibitors on U.S. agricultural emissions of reactive nitrogen gases. Luo L; Cohan DS; Gurung RB; Venterea RT; Ran L; Benson V; Yuan Y J Environ Manage; 2024 May; 359():121043. PubMed ID: 38723497 [TBL] [Abstract][Full Text] [Related]
14. Mapping direct N Mendoza Beltran A; Jepsen K; Rufí-Salís M; Ventura S; Madrid Lopez C; Villalba G Sci Total Environ; 2022 May; 822():153514. PubMed ID: 35101482 [TBL] [Abstract][Full Text] [Related]
15. Soil Nitrous Oxide Emissions by Atmospheric Nitrogen Deposition over Global Agricultural Systems. Yang Y; Liu L; Zhang F; Zhang X; Xu W; Liu X; Wang Z; Xie Y Environ Sci Technol; 2021 Apr; 55(8):4420-4429. PubMed ID: 33734680 [TBL] [Abstract][Full Text] [Related]
16. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Shcherbak I; Millar N; Robertson GP Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9199-204. PubMed ID: 24927583 [TBL] [Abstract][Full Text] [Related]
17. [Effect of Different Fertilization Treatments on Methane and Nitrous Oxide Emissions from Rice-Vegetable Rotation in a Tropical Region, China]. Shao XH; Tang SR; Meng L; Wu YZ; Li JQ; Gou GL Huan Jing Ke Xue; 2022 Nov; 43(11):5149-5158. PubMed ID: 36437087 [TBL] [Abstract][Full Text] [Related]
18. Nitrous oxide (N2O) emission characteristics of farmland (rice, wheat, and maize) based on different fertilization strategies. Hou D; Meng X; Qin M; Zheng E; Chen P; Meng F; Zhang C PLoS One; 2024; 19(7):e0305385. PubMed ID: 38976672 [TBL] [Abstract][Full Text] [Related]
19. Nitrogen use efficiency, crop water productivity and nitrous oxide emissions from Chinese greenhouse vegetables: A meta-analysis. Gu J; Wu Y; Tian Z; Xu H Sci Total Environ; 2020 Nov; 743():140696. PubMed ID: 32653715 [TBL] [Abstract][Full Text] [Related]
20. A review of nitrous oxide mitigation by farm nitrogen management in temperate grassland-based agriculture. Li D; Watson CJ; Yan MJ; Lalor S; Rafique R; Hyde B; Lanigan G; Richards KG; Holden NM; Humphreys J J Environ Manage; 2013 Oct; 128():893-903. PubMed ID: 23880433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]