These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39158285)
1. Metabolic Engineering of High L-Lysine-Producing Chen Y; Song W; Wang G; Wang Y; Dong S; Wu Y; Wang R; Ma C ACS Synth Biol; 2024 Sep; 13(9):2948-2959. PubMed ID: 39158285 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Escherichia coli for de novo production of 5-hydroxyvalerate via L-lysine α-oxidase pathway. Wang G; Wang Y; Wu Y; Dong S; Zhao H; Deng H; Chen Y; Song W; Wang R; Ma C Bioresour Technol; 2024 Nov; 412():131359. PubMed ID: 39197663 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering of Cen X; Liu Y; Chen B; Liu D; Chen Z ACS Synth Biol; 2021 Jan; 10(1):192-203. PubMed ID: 33301309 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Cen X; Liu Y; Zhu F; Liu D; Chen Z Metab Eng; 2022 Nov; 74():168-177. PubMed ID: 36328298 [TBL] [Abstract][Full Text] [Related]
5. Complementation of reducing power for 5-hydroxyvaleric acid and 1,5-pentanediol production via glucose dehydrogenase in Escherichia coli whole-cell system. Kim B; Oh SJ; Hwang JH; Kim HJ; Shin N; Joo JC; Choi KY; Park SH; Park K; Bhatia SK; Yang YH Enzyme Microb Technol; 2023 Oct; 170():110305. PubMed ID: 37595400 [TBL] [Abstract][Full Text] [Related]
6. Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli. Nonaka D; Hirata Y; Kishida M; Mori A; Fujiwara R; Kondo A; Mori Y; Noda S; Tanaka T Biotechnol J; 2024 Aug; 19(8):e2400210. PubMed ID: 39167552 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Shin JH; Park SH; Oh YH; Choi JW; Lee MH; Cho JS; Jeong KJ; Joo JC; Yu J; Park SJ; Lee SY Microb Cell Fact; 2016 Oct; 15(1):174. PubMed ID: 27717386 [TBL] [Abstract][Full Text] [Related]
8. Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli. Miscevic D; Mao JY; Kefale T; Abedi D; Huang CC; Moo-Young M; Chou CP Appl Microbiol Biotechnol; 2020 Jun; 104(12):5259-5272. PubMed ID: 32291486 [TBL] [Abstract][Full Text] [Related]
9. An integrated cofactor and co-substrate recycling pathway for the biosynthesis of 1,5-pentanediol. Hua W; Liang B; Zhou S; Zhang Q; Xu S; Chen K; Wang X Microb Cell Fact; 2024 May; 23(1):132. PubMed ID: 38711050 [TBL] [Abstract][Full Text] [Related]
10. Expanding metabolic pathway for de novo biosynthesis of the chiral pharmaceutical intermediate L-pipecolic acid in Escherichia coli. Ying H; Tao S; Wang J; Ma W; Chen K; Wang X; Ouyang P Microb Cell Fact; 2017 Mar; 16(1):52. PubMed ID: 28347340 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of 1,3-Propanediol via a New Pathway from Glucose in Li M; Zhang Y; Li J; Tan T ACS Synth Biol; 2023 Jul; 12(7):2083-2093. PubMed ID: 37316976 [TBL] [Abstract][Full Text] [Related]
12. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Rohles CM; Gießelmann G; Kohlstedt M; Wittmann C; Becker J Microb Cell Fact; 2016 Sep; 15(1):154. PubMed ID: 27618862 [TBL] [Abstract][Full Text] [Related]
13. High-efficiency production of 5-aminovalerate in engineered Escherichia coli controlled by an anaerobically-induced nirB promoter. Cheng J; Tu W; Cao R; Gou X; Zhang Y; Wang D; Li Q Biochem Biophys Res Commun; 2021 May; 552():170-175. PubMed ID: 33751934 [TBL] [Abstract][Full Text] [Related]
14. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Park SJ; Kim EY; Noh W; Park HM; Oh YH; Lee SH; Song BK; Jegal J; Lee SY Metab Eng; 2013 Mar; 16():42-7. PubMed ID: 23246520 [TBL] [Abstract][Full Text] [Related]
15. Efficiently manufacturing ectoine via metabolic engineering and protein engineering of L-2,4-diaminobutyrate transaminase. Su B; Yang W; Zhou Y; Lin J Int J Biol Macromol; 2024 Aug; 275(Pt 2):133612. PubMed ID: 38960226 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose. Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016 [TBL] [Abstract][Full Text] [Related]
18. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Guo J; Cao Y; Liu H; Zhang R; Xian M; Liu H Appl Microbiol Biotechnol; 2019 Mar; 103(6):2597-2608. PubMed ID: 30719552 [TBL] [Abstract][Full Text] [Related]
19. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Adkins J; Jordan J; Nielsen DR Biotechnol Bioeng; 2013 Jun; 110(6):1726-34. PubMed ID: 23296991 [TBL] [Abstract][Full Text] [Related]
20. De novo Synthesis of 2-phenylethanol from Glucose by Metabolically Engineered Escherichia coli. Wang G; Wang M; Yang J; Li Q; Zhu N; Liu L; Hu X; Yang X J Ind Microbiol Biotechnol; 2023 Feb; 49(6):. PubMed ID: 36370454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]