These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 3915868)

  • 1. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of Na+-dependent D-glucose transport.
    Hopfer U
    J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles.
    Aronson PS; Kinsella JL
    Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism of Na+-dependent D-glucose transport.
    Hopfer U; Groseclose R
    J Biol Chem; 1980 May; 255(10):4453-62. PubMed ID: 7372586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of Na+ -glucose cotransport through the rabbit intestinal SGLT1 protein.
    Berteloot A
    J Membr Biol; 2003 Mar; 192(2):89-100. PubMed ID: 12682797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenylalanine transport in guinea pig jejunum. A general mechanism for organic solute and sodium cotransport.
    Alvarado F; Lherminier M
    J Physiol (Paris); 1982 Aug; 78(2):131-45. PubMed ID: 7131327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic features of cotransport mechanisms under isotope exchange conditions.
    Hopfer U; Liedtke CM
    Membr Biochem; 1981; 4(1):11-29. PubMed ID: 7012543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of sodium in non-electrolyte transport across animal cell membranes.
    Schultz SG; Curran PF
    Physiologist; 1969 Nov; 12(4):437-52. PubMed ID: 4900037
    [No Abstract]   [Full Text] [Related]  

  • 10. Na-glucose and Na-neutral amino acid cotransport are uniquely regulated by constitutive nitric oxide in rabbit small intestinal villus cells.
    Coon S; Kim J; Shao G; Sundaram U
    Am J Physiol Gastrointest Liver Physiol; 2005 Dec; 289(6):G1030-5. PubMed ID: 16099871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cadmium on Na-Pi cotransport kinetics in rabbit renal brush-border membrane vesicles.
    Park K; Kim KR; Kim JY; Park YS
    Toxicol Appl Pharmacol; 1997 Aug; 145(2):255-9. PubMed ID: 9266797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutral Na-amino acid cotransport is differentially regulated by glucocorticoids in the normal and chronically inflamed rabbit small intestine.
    Sundaram U; Wisel S; Coon S
    Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G467-74. PubMed ID: 17290012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of regulation of rabbit intestinal villus cell brush border membrane Na/H exchange by nitric oxide.
    Coon S; Shao G; Wisel S; Vulaupalli R; Sundaram U
    Am J Physiol Gastrointest Liver Physiol; 2007 Feb; 292(2):G475-81. PubMed ID: 17290013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of Na+-L-lactate cotransport by brush-border membrane vesicles from horse kidney. Analysis by isotopic exchange kinetics of a sequential model and stoichiometry.
    Mengual R; Leblanc G; Sudaka P
    J Biol Chem; 1983 Dec; 258(24):15071-8. PubMed ID: 6654905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The small-intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to delta psi.
    Kessler M; Semenza G
    J Membr Biol; 1983; 76(1):27-56. PubMed ID: 6315944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of models for cotransport.
    Harrison DA; Rowe GW; Lumsden CJ; Silverman M
    Biochim Biophys Acta; 1984 Jul; 774(1):1-10. PubMed ID: 6539622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolated vacuoles and tonoplast vesicles as experimental tools to study solute traffic to and from vacuoles.
    Boudet AM; Alibert G
    Prog Clin Biol Res; 1988; 270():255-67. PubMed ID: 3413166
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetic analysis of a family of cotransport models.
    Turner RJ
    Biochim Biophys Acta; 1981 Dec; 649(2):269-80. PubMed ID: 7317398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course analysis of cotransport in membrane vesicles: solutes and tracers.
    Andrietti F; Piccinelli AD; Sacchi VF
    Biochim Biophys Acta; 1990 May; 1024(2):373-9. PubMed ID: 2354185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel method for the observation of membrane transporter dynamics.
    Horn LW
    Biophys J; 1993 Jan; 64(1):281-9. PubMed ID: 8431548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.