These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39159005)
1. Regulating the Porosity and Bipolarity of Polyimide-Based Covalent Organic Framework for Advanced Aqueous Dual-Ion Symmetric Batteries. Geng D; Zhang H; Fu Z; Liu Z; An Y; Yang J; Sha D; Pan L; Yan C; Sun Z Adv Sci (Weinh); 2024 Oct; 11(39):e2407073. PubMed ID: 39159005 [TBL] [Abstract][Full Text] [Related]
2. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255 [TBL] [Abstract][Full Text] [Related]
3. Crafting Core-Shell Heterostructures with Enriched Active Centers for High-Energy-Density Symmetric Lithium-Ion Batteries. Wang Y; Wang J; Peng J; Jiang Y; Zhu Y; Yang Y ACS Nano; 2024 Sep; 18(35):23958-23967. PubMed ID: 39169879 [TBL] [Abstract][Full Text] [Related]
4. Mesoporous Polyimide-Linked Covalent Organic Framework with Multiple Redox-Active Sites for High-Performance Cathodic Li Storage. Yang X; Gong L; Liu X; Zhang P; Li B; Qi D; Wang K; He F; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202207043. PubMed ID: 35638157 [TBL] [Abstract][Full Text] [Related]
5. Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. Zhao L; Zheng L; Li X; Wang H; Lv LP; Chen S; Sun W; Wang Y ACS Appl Mater Interfaces; 2021 Oct; 13(41):48913-48922. PubMed ID: 34609129 [TBL] [Abstract][Full Text] [Related]
6. Charge Carriers for Aqueous Dual-Ion Batteries. Wang S; Guan Y; Gan F; Shao Z ChemSusChem; 2023 Feb; 16(4):e202201373. PubMed ID: 36136751 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Polyimide Covalent Organic Frameworks for Lithium-Ion Batteries: Exceptional Stability and Capacity Retention at High Current Densities. Li J; Zhang J; Hou Y; Suo J; Liu J; Li H; Qiu S; Valtchev V; Fang Q; Liu X Angew Chem Int Ed Engl; 2024 Dec; 63(52):e202412452. PubMed ID: 39343741 [TBL] [Abstract][Full Text] [Related]
9. Covalent Organic Framework with Highly Accessible Carbonyls and π-Cation Effect for Advanced Potassium-Ion Batteries. Luo XX; Li WH; Liang HJ; Zhang HX; Du KD; Wang XT; Liu XF; Zhang JP; Wu XL Angew Chem Int Ed Engl; 2022 Mar; 61(10):e202117661. PubMed ID: 35034424 [TBL] [Abstract][Full Text] [Related]
10. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464 [TBL] [Abstract][Full Text] [Related]
11. A COF-Like N-Rich Conjugated Microporous Polytriphenylamine Cathode with Pseudocapacitive Anion Storage Behavior for High-Energy Aqueous Zinc Dual-Ion Batteries. Zhang H; Zhong L; Xie J; Yang F; Liu X; Lu X Adv Mater; 2021 Aug; 33(34):e2101857. PubMed ID: 34259360 [TBL] [Abstract][Full Text] [Related]
12. Covalent Organic Framework with Multiple Redox Active Sites for High-Performance Aqueous Calcium Ion Batteries. Zhang S; Zhu YL; Ren S; Li C; Chen XB; Li Z; Han Y; Shi Z; Feng S J Am Chem Soc; 2023 Aug; 145(31):17309-17320. PubMed ID: 37525440 [TBL] [Abstract][Full Text] [Related]
13. Covalent Organic Framework Derived Oxygen/Sulfur-Doped Porous Carbon for Robust High-Capacitance Symmetric Supercapacitors. Wang Y; Zhao J; Xing Y; Dong Y; Wang Z; Hasebe Y; Baughman RH Chem Asian J; 2024 Oct; ():e202400930. PubMed ID: 39400508 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Manipulation of Hydrogen Evolution and Zinc Ion Flux in Metal-Covalent Organic Frameworks for Dendrite-free Zn-based Aqueous Batteries. Guo C; Zhou J; Chen Y; Zhuang H; Li Q; Li J; Tian X; Zhang Y; Yao X; Chen Y; Li SL; Lan YQ Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202210871. PubMed ID: 35938536 [TBL] [Abstract][Full Text] [Related]
15. Integrating Multiple Redox-Active Units into Conductive Covalent Organic Frameworks for High-Performance Sodium-Ion Batteries. Ke SW; Li W; Gao L; Su J; Luo R; Yuan S; He P; Zuo JL Angew Chem Int Ed Engl; 2024 Sep; ():e202417493. PubMed ID: 39292224 [TBL] [Abstract][Full Text] [Related]
16. Steering lithium and potassium storage mechanism in covalent organic frameworks by incorporating transition metal single atoms. Cao Y; Xu Q; Sun Y; Shi J; Xu Y; Tang Y; Chen X; Yang S; Jiang Z; Um HD; Li X; Wang Y Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2315407121. PubMed ID: 38502699 [TBL] [Abstract][Full Text] [Related]
17. Azo-Branched Covalent Organic Framework Thin Films as Active Separators for Superior Sodium-Sulfur Batteries. Yin C; Li Z; Zhao D; Yang J; Zhang Y; Du Y; Wang Y ACS Nano; 2022 Sep; 16(9):14178-14187. PubMed ID: 35994525 [TBL] [Abstract][Full Text] [Related]
18. A covalent organic framework as a dual-active-center cathode for a high-performance aqueous zinc-ion battery. Li H; Cao M; Fu Z; Ma Q; Zhang L; Wang R; Liang F; Zhou T; Zhang C Chem Sci; 2024 Mar; 15(12):4341-4348. PubMed ID: 38516068 [TBL] [Abstract][Full Text] [Related]
19. Functional Separator Enabled by Covalent Organic Frameworks for High-Performance Li Metal Batteries. Wang C; Li W; Jin Y; Liu J; Wang H; Zhang Q Small; 2023 Jul; 19(28):e2300023. PubMed ID: 37191227 [TBL] [Abstract][Full Text] [Related]
20. High Sodium Ion Storage by Multifunctional Covalent Organic Frameworks for Sustainable Sodium Batteries. Shehab MK; El-Kaderi HM ACS Appl Mater Interfaces; 2024 Mar; 16(12):14750-14758. PubMed ID: 38498858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]