These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 39159467)
1. An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells. Cai J; Chen B; He M; Yuan G; Hu B Anal Chem; 2024 Sep; 96(35):14222-14229. PubMed ID: 39159467 [TBL] [Abstract][Full Text] [Related]
2. A Cascaded Phase-Transfer Microfluidic Chip with Magnetic Probe for High-Activity Sorting, Purification, Release, and Detection of Circulating Tumor Cells. Nian M; Chen B; He M; Hu B Anal Chem; 2024 Jan; 96(2):766-774. PubMed ID: 38158582 [TBL] [Abstract][Full Text] [Related]
3. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. Huang D; Xiang N Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279 [TBL] [Abstract][Full Text] [Related]
4. Dual-Multivalent-Aptamer-Conjugated Nanoprobes for Superefficient Discerning of Single Circulating Tumor Cells in a Microfluidic Chip with Inductively Coupled Plasma Mass Spectrometry Detection. Zhang X; Wei X; Men X; Wu CX; Bai JJ; Li WT; Yang T; Chen ML; Wang JH ACS Appl Mater Interfaces; 2021 Sep; 13(36):43668-43675. PubMed ID: 34473482 [TBL] [Abstract][Full Text] [Related]
5. Label-free Separation of Circulating Tumor Cells Using a Self-Amplified Inertial Focusing (SAIF) Microfluidic Chip. Abdulla A; Zhang T; Ahmad KZ; Li S; Lou J; Ding X Anal Chem; 2020 Dec; 92(24):16170-16179. PubMed ID: 33232155 [TBL] [Abstract][Full Text] [Related]
6. A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles. Farahinia A; Khani M; Morhart TA; Wells G; Badea I; Wilson LD; Zhang W Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338775 [TBL] [Abstract][Full Text] [Related]
7. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples. Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078 [TBL] [Abstract][Full Text] [Related]
8. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Islam MS; Chen X Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770 [TBL] [Abstract][Full Text] [Related]
9. Microchip for Immunomagnetic Sorting of Circulating Tumor Cells (CTCs). Descamps L; Laurenceau E; Cavassila S; Payen L; Le Roy D; Deman AL Methods Mol Biol; 2024; 2804():91-100. PubMed ID: 38753142 [TBL] [Abstract][Full Text] [Related]
10. A High-Throughput Circular Tumor Cell Sorting Chip with Trapezoidal Cross Section. Lu S; Ma D; Mi X Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894343 [TBL] [Abstract][Full Text] [Related]
11. Novel size-based design of spiral microfluidic devices with elliptic configurations and trapezoidal cross-section for ultra-fast isolation of circulating tumor cells. Akbarnataj K; Maleki S; Rezaeian M; Haki M; Shamloo A Talanta; 2023 Mar; 254():124125. PubMed ID: 36462283 [TBL] [Abstract][Full Text] [Related]
12. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays. Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849 [TBL] [Abstract][Full Text] [Related]
13. Numerical Study of a Centrifugal Platform for the Inertial Separation of Circulating Tumor Cells Using Contraction-Expansion Array Microchannels. Ebrahimi S; Tahmasebipour M Arch Razi Inst; 2022 Apr; 77(2):647-660. PubMed ID: 36284940 [TBL] [Abstract][Full Text] [Related]
14. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Hyun KA; Lee TY; Lee SH; Jung HI Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis. Gogoi P; Sepehri S; Chow W; Handique K; Wang Y Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840 [TBL] [Abstract][Full Text] [Related]
16. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Khan M; Chen X Electrophoresis; 2022 Apr; 43(7-8):879-891. PubMed ID: 35015306 [TBL] [Abstract][Full Text] [Related]
17. All-in-One Microfluidic Chip for Online Labeling, Separating, and Focusing Rare Circulating Tumor Cells from Blood Samples Followed by Inductively Coupled Plasma Mass Spectrometry Detection. Xu Y; Chen B; He M; Cui Z; Hu B Anal Chem; 2023 Sep; 95(37):14061-14067. PubMed ID: 37677145 [TBL] [Abstract][Full Text] [Related]
18. Label-free ferrohydrodynamic cell separation of circulating tumor cells. Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987 [TBL] [Abstract][Full Text] [Related]
19. MagPure chip: an immunomagnetic-based microfluidic device for high purification of circulating tumor cells from liquid biopsies. Descamps L; Garcia J; Barthelemy D; Laurenceau E; Payen L; Le Roy D; Deman AL Lab Chip; 2022 Oct; 22(21):4151-4166. PubMed ID: 36148526 [TBL] [Abstract][Full Text] [Related]
20. Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Gao R; Cheng L; Wang S; Bi X; Wang X; Wang R; Chen X; Zha Z; Wang F; Xu X; Zhao G; Yu L Talanta; 2020 Jan; 207():120261. PubMed ID: 31594567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]