These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39159521)
1. Upconversion nanoparticles-CuMnO Yan S; Xing G; Yuan X; Cui E; Ji K; Yang X; Su J; Mara D; Tang J; Zhao Y; Hu J; Liu J J Colloid Interface Sci; 2025 Jan; 677(Pt B):666-674. PubMed ID: 39159521 [TBL] [Abstract][Full Text] [Related]
2. FRET-Based Upconversion Nanoprobe Sensitized by Nd Wang H; Li Y; Yang M; Wang P; Gu Y ACS Appl Mater Interfaces; 2019 Feb; 11(7):7441-7449. PubMed ID: 30673225 [TBL] [Abstract][Full Text] [Related]
3. Engineered lanthanide-doped upconversion nanoparticles for biosensing and bioimaging application. Li Y; Chen C; Liu F; Liu J Mikrochim Acta; 2022 Feb; 189(3):109. PubMed ID: 35175435 [TBL] [Abstract][Full Text] [Related]
4. Construction of an upconversion luminescence composite nanoprobe for ratiometric single particle imaging detection of hydrogen peroxide in food. Wang R; Cheng J; Wang L; Liu Y; Chen H Food Chem; 2024 Dec; 461():140928. PubMed ID: 39181043 [TBL] [Abstract][Full Text] [Related]
5. A hemicyanine-modified upconversion nanoprobe for NIR-excited evaluating superoxide signaling in drug-induced liver injury. Ye M; Shen Y; Xiao Z; Li Y; Zhang Q; Lan Y; Zhu C; Zhou Y Anal Chim Acta; 2024 Oct; 1325():343122. PubMed ID: 39244308 [TBL] [Abstract][Full Text] [Related]
6. A cyanine-modified upconversion nanoprobe for NIR-excited imaging of endogenous hydrogen peroxide signaling in vivo. Zhou Y; Pei W; Zhang X; Chen W; Wu J; Yao C; Huang L; Zhang H; Huang W; Chye Loo JS; Zhang Q Biomaterials; 2015 Jun; 54():34-43. PubMed ID: 25907037 [TBL] [Abstract][Full Text] [Related]
7. A Versatile Strategy for Constructing Ratiometric Upconversion Luminescent Probe with Sensitized Emission of Energy Acceptor. Zuo M; Duan Q; Li C; Ge J; Wang Q; Li Z; Liu Z Anal Chem; 2021 Apr; 93(13):5635-5643. PubMed ID: 33749233 [TBL] [Abstract][Full Text] [Related]
8. Chiral Core-Shell Upconversion Nanoparticle@MOF Nanoassemblies for Quantification and Bioimaging of Reactive Oxygen Species Hao C; Wu X; Sun M; Zhang H; Yuan A; Xu L; Xu C; Kuang H J Am Chem Soc; 2019 Dec; 141(49):19373-19378. PubMed ID: 31711292 [TBL] [Abstract][Full Text] [Related]
9. Recent advances of lanthanide-doped upconversion nanoparticles for biological applications. Li H; Wang X; Huang D; Chen G Nanotechnology; 2020 Feb; 31(7):072001. PubMed ID: 31627201 [TBL] [Abstract][Full Text] [Related]
10. Upconversion nanoprobes for efficiently in vitro imaging reactive oxygen species and in vivo diagnosing rheumatoid arthritis. Chen Z; Liu Z; Li Z; Ju E; Gao N; Zhou L; Ren J; Qu X Biomaterials; 2015 Jan; 39():15-22. PubMed ID: 25477167 [TBL] [Abstract][Full Text] [Related]
11. Lanthanide-Doped Near-Infrared Nanoparticles for Biophotonics. Li H; Wang X; Ohulchanskyy TY; Chen G Adv Mater; 2021 Feb; 33(6):e2000678. PubMed ID: 32638426 [TBL] [Abstract][Full Text] [Related]
12. Cyanine-modified near-infrared upconversion nanoprobe for ratiometric sensing of N Li CJ; Ye MA; Su PP; Yao C; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 247():119153. PubMed ID: 33188975 [TBL] [Abstract][Full Text] [Related]
13. Activatable Photodynamic Therapy with Therapeutic Effect Prediction Based on a Self-correction Upconversion Nanoprobe. Li Y; Zhang X; Zhang Y; Zhang Y; He Y; Liu Y; Ju H ACS Appl Mater Interfaces; 2020 Apr; 12(17):19313-19323. PubMed ID: 32275130 [TBL] [Abstract][Full Text] [Related]
14. Self-assembled ratiometric sensor for specific detection of hypoxia in living cells based on lanthanide-doped upconversion nanoparticles and gold nanoparticles. Zhang X; Shu W; Cheng M; Wang L; Ran X Nanotechnology; 2023 Jul; 34(41):. PubMed ID: 37433285 [TBL] [Abstract][Full Text] [Related]
15. Combating Concentration Quenching in Upconversion Nanoparticles. Chen B; Wang F Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900 [TBL] [Abstract][Full Text] [Related]
16. Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies. Resch-Genger U; Gorris HH Anal Bioanal Chem; 2017 Oct; 409(25):5855-5874. PubMed ID: 28710516 [TBL] [Abstract][Full Text] [Related]
17. NIR-excited imaging and in vivo visualization of β-galactosidase activity using a pyranonitrile-modified upconversion nanoprobe. Jiang D; Tan Q; Shen Y; Ye M; Li J; Zhou Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 292():122411. PubMed ID: 36731306 [TBL] [Abstract][Full Text] [Related]
18. Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications. Gorris HH; Resch-Genger U Anal Bioanal Chem; 2017 Oct; 409(25):5875-5890. PubMed ID: 28687881 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers. Cheng Z; Lin J Macromol Rapid Commun; 2015 May; 36(9):790-827. PubMed ID: 25808559 [TBL] [Abstract][Full Text] [Related]
20. A FRET-based upconversion nanoprobe assembled with an electrochromic chromophore for sensitive detection of hydrogen sulfide Cui M; Li H; Ren X; Xia L; Deng D; Gu Y; Li D; Wang P Nanoscale; 2020 Aug; 12(33):17517-17529. PubMed ID: 32812601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]