These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 39160452)

  • 1. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one in Mycolicibacterium smegmatis.
    Hernández-Fernández G; Acedos MG; de la Torre I; Ibero J; García JL; Galán B
    Microb Biotechnol; 2024 Aug; 17(8):e14551. PubMed ID: 39160452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the aldolase responsible for the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from natural sterols in Mycolicibacterium smegmatis.
    Hernández-Fernández G; Acedos MG; García JL; Galán B
    Microb Biotechnol; 2024 Jan; 17(1):e14270. PubMed ID: 37154793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes.
    Xiong LB; Liu HH; Xu LQ; Sun WJ; Wang FQ; Wei DZ
    Microb Cell Fact; 2017 May; 16(1):89. PubMed ID: 28532497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobacterium smegmatis is a suitable cell factory for the production of steroidic synthons.
    Galán B; Uhía I; García-Fernández E; Martínez I; Bahíllo E; de la Fuente JL; Barredo JL; Fernández-Cabezón L; García JL
    Microb Biotechnol; 2017 Jan; 10(1):138-150. PubMed ID: 27804278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons.
    Zhao YQ; Liu YJ; Song L; Yu D; Liu K; Liu K; Gao B; Tao XY; Xiong LB; Wang FQ; Wei DZ
    Biotechnol Biofuels Bioprod; 2023 Aug; 16(1):121. PubMed ID: 37533054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway.
    Song S; He J; Gao M; Huang Y; Cheng X; Su Z
    Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum.
    Liu X; He B; Zhang J; Yuan C; Han S; Du G; Shi J; Sun J; Zhang B
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7635-7646. PubMed ID: 37831185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mycolicibacterium cell factory for the production of steroid-based drug intermediates.
    Zhao A; Zhang X; Li Y; Wang Z; Lv Y; Liu J; Alam MA; Xiong W; Xu J
    Biotechnol Adv; 2021 Dec; 53():107860. PubMed ID: 34710554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dual Role Reductase from Phytosterols Catabolism Enables the Efficient Production of Valuable Steroid Precursors.
    Peng H; Wang Y; Jiang K; Chen X; Zhang W; Zhang Y; Deng Z; Qu X
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5414-5420. PubMed ID: 33258169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the Steroid Hydroxylating System from
    Felpeto-Santero C; Galán B; García JL
    Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recycled batch biotransformation strategy for 22-hydroxy-23,24-bisnorchol-4-ene-3-one production from high concentration of phytosterols by mycobacterial resting cells.
    Hu Y; Wang D; Wang X; Wei D
    Biotechnol Lett; 2020 Dec; 42(12):2589-2594. PubMed ID: 32804273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioconversion of Phytosterols to 9-Hydroxy-3-Oxo-4,17-Pregadiene-20-Carboxylic Acid Methyl Ester by Enoyl-CoA Deficiency and Modifying Multiple Genes in Mycolicibacterium neoaurum.
    Yuan C; Song S; He J; Zhang J; Liu X; Pena EL; Sun J; Shi J; Su Z; Zhang B
    Appl Environ Microbiol; 2022 Nov; 88(22):e0130322. PubMed ID: 36286498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ
    Liu X; Zhang J; Yuan C; Du G; Han S; Shi J; Sun J; Zhang B
    Microb Cell Fact; 2023 Mar; 22(1):53. PubMed ID: 36922830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis.
    Felpeto-Santero C; Galán B; García JL
    Microb Biotechnol; 2021 Nov; 14(6):2514-2524. PubMed ID: 33660943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Production of 9,22-Dihydroxy-23,24-bisnorchol-4-ene-3-one from Phytosterols by Modifying Multiple Genes in
    Han S; Liu X; He B; Zhai X; Yuan C; Li Y; Lin W; Wang H; Zhang B
    Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of 21-hydroxy-20-methyl-pregna-1,4-dien-3-one by modifying multiple genes in Mycolicibacterium.
    Yuan C; Ma Z; Li Y; Zhang J; Liu X; Han S; Du G; Shi J; Sun J; Zhang B
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1563-1574. PubMed ID: 36729227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons.
    Zhang R; Liu X; Wang Y; Han Y; Sun J; Shi J; Zhang B
    Microb Cell Fact; 2018 May; 17(1):77. PubMed ID: 29776364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
    Bragin EY; Shtratnikova VY; Dovbnya DV; Schelkunov MI; Pekov YA; Malakho SG; Egorova OV; Ivashina TV; Sokolov SL; Ashapkin VV; Donova MV
    J Steroid Biochem Mol Biol; 2013 Nov; 138():41-53. PubMed ID: 23474435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum.
    Xiong LB; Liu HH; Zhao M; Liu YJ; Song L; Xie ZY; Xu YX; Wang FQ; Wei DZ
    Microb Cell Fact; 2020 Mar; 19(1):80. PubMed ID: 32228591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs.
    Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.