These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39160918)
1. Anomalous diffusion in external-force-affected deterministic systems. Liu J; Sun K; Wang H Phys Rev E; 2024 Jul; 110(1-1):014204. PubMed ID: 39160918 [TBL] [Abstract][Full Text] [Related]
2. Anomalous Diffusion in Random Dynamical Systems. Sato Y; Klages R Phys Rev Lett; 2019 May; 122(17):174101. PubMed ID: 31107078 [TBL] [Abstract][Full Text] [Related]
3. Diffusion of active Brownian particles under quenched disorder. Zhao XB; Zhang X; Guo W PLoS One; 2024; 19(3):e0298466. PubMed ID: 38437208 [TBL] [Abstract][Full Text] [Related]
4. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Metzler R; Jeon JH; Cherstvy AG; Barkai E Phys Chem Chem Phys; 2014 Nov; 16(44):24128-64. PubMed ID: 25297814 [TBL] [Abstract][Full Text] [Related]
5. Fractional Feynman-Kac equation for weak ergodicity breaking. Carmi S; Barkai E Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061104. PubMed ID: 22304037 [TBL] [Abstract][Full Text] [Related]
6. Brownian particles driven by spatially periodic noise. Breoni D; Blossey R; Löwen H Eur Phys J E Soft Matter; 2022 Mar; 45(3):18. PubMed ID: 35230521 [TBL] [Abstract][Full Text] [Related]
7. Ergodic property of random diffusivity system with trapping events. Wang X; Chen Y Phys Rev E; 2022 Jan; 105(1-1):014106. PubMed ID: 35193240 [TBL] [Abstract][Full Text] [Related]
8. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation. Shin HK; Choi B; Talkner P; Lee EK J Chem Phys; 2014 Dec; 141(21):214112. PubMed ID: 25481134 [TBL] [Abstract][Full Text] [Related]
9. Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity. Cherstvy AG; Chechkin AV; Metzler R Soft Matter; 2014 Mar; 10(10):1591-601. PubMed ID: 24652104 [TBL] [Abstract][Full Text] [Related]
10. Weak ergodicity breaking and aging of chaotic transport in Hamiltonian systems. Albers T; Radons G Phys Rev Lett; 2014 Oct; 113(18):184101. PubMed ID: 25396371 [TBL] [Abstract][Full Text] [Related]
11. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise. Wang W; Cherstvy AG; Liu X; Metzler R Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926 [TBL] [Abstract][Full Text] [Related]
12. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Burov S; Jeon JH; Metzler R; Barkai E Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639 [TBL] [Abstract][Full Text] [Related]
13. Langevin picture of anomalous diffusion processes in expanding medium. Wang X; Chen Y Phys Rev E; 2023 Feb; 107(2-1):024105. PubMed ID: 36932587 [TBL] [Abstract][Full Text] [Related]
14. Langevin equation in complex media and anomalous diffusion. Vitali S; Sposini V; Sliusarenko O; Paradisi P; Castellani G; Pagnini G J R Soc Interface; 2018 Aug; 15(145):. PubMed ID: 30158182 [TBL] [Abstract][Full Text] [Related]
15. Ergodicity breaking and particle spreading in noisy heterogeneous diffusion processes. Cherstvy AG; Metzler R J Chem Phys; 2015 Apr; 142(14):144105. PubMed ID: 25877560 [TBL] [Abstract][Full Text] [Related]
16. Transient aging in fractional Brownian and Langevin-equation motion. Kursawe J; Schulz J; Metzler R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403 [TBL] [Abstract][Full Text] [Related]
17. Fractal model of anomalous diffusion. Gmachowski L Eur Biophys J; 2015 Dec; 44(8):613-21. PubMed ID: 26129728 [TBL] [Abstract][Full Text] [Related]
18. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Jeon JH; Tejedor V; Burov S; Barkai E; Selhuber-Unkel C; Berg-Sørensen K; Oddershede L; Metzler R Phys Rev Lett; 2011 Jan; 106(4):048103. PubMed ID: 21405366 [TBL] [Abstract][Full Text] [Related]
19. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist. Meroz Y; Sokolov IM; Klafter J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308 [TBL] [Abstract][Full Text] [Related]
20. Brownian motion of an asymmetrical particle in a potential field. Grima R; Yaliraki SN J Chem Phys; 2007 Aug; 127(8):084511. PubMed ID: 17764273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]