These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39160976)

  • 1. Tensor approximation of functional differential equations.
    Rodgers A; Venturi D
    Phys Rev E; 2024 Jul; 110(1-2):015310. PubMed ID: 39160976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The functional equation truncation method for approximating slow invariant manifolds: a rapid method for computing intrinsic low-dimensional manifolds.
    Roussel MR; Tang T
    J Chem Phys; 2006 Dec; 125(21):214103. PubMed ID: 17166011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-resolution fuzzy transform combined compact scheme for 2D nonlinear elliptic partial differential equations.
    Jha N; Perfilieva I; Kritika
    MethodsX; 2023; 10():102206. PubMed ID: 37206645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving high-dimensional partial differential equations using deep learning.
    Han J; Jentzen A; E W
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):8505-8510. PubMed ID: 30082389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A solution theory for a general class of SPDEs.
    Süß A; Waurick M
    Stoch Partial Differ Equ; 2017; 5(2):278-318. PubMed ID: 30931235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Master equations and the theory of stochastic path integrals.
    Weber MF; Frey E
    Rep Prog Phys; 2017 Apr; 80(4):046601. PubMed ID: 28306551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CrasyDSE: A framework for solving Dyson-Schwinger equations.
    Huber MQ; Mitter M
    Comput Phys Commun; 2012 Nov; 183(11):2441-2457. PubMed ID: 25540463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tackling the curse of dimensionality with physics-informed neural networks.
    Hu Z; Shukla K; Karniadakis GE; Kawaguchi K
    Neural Netw; 2024 Aug; 176():106369. PubMed ID: 38754287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New operational matrices for solving fractional differential equations on the half-line.
    Bhrawy AH; Taha TM; Alzahrani EO; Baleanu D; Alzahrani AA
    PLoS One; 2015; 10(5):e0126620. PubMed ID: 25996369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forward and Inverse Dynamics of a Six-Axis Accelerometer Based on a Parallel Mechanism.
    Wang L; You J; Yang X; Chen H; Li C; Wu H
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can physics-informed neural networks beat the finite element method?
    Grossmann TG; Komorowska UJ; Latz J; Schönlieb CB
    IMA J Appl Math; 2024 Jan; 89(1):143-174. PubMed ID: 38933736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integer Versus Fractional Order SEIR Deterministic and Stochastic Models of Measles.
    Islam MR; Peace A; Medina D; Oraby T
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32197541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling the Power of Implicit Six-Point Block Scheme: Advancing numerical approximation of two-dimensional PDEs in physical systems.
    Olaoluwa Omole E; Olusheye Adeyefa E; Iyabo Apanpa K; Iyadunni Ayodele V; Emmanuel Amoyedo F; Emadifar H
    PLoS One; 2024; 19(5):e0301505. PubMed ID: 38753696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.
    Motsa SS; Magagula VM; Sibanda P
    ScientificWorldJournal; 2014; 2014():581987. PubMed ID: 25254252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LordNet: An efficient neural network for learning to solve parametric partial differential equations without simulated data.
    Huang X; Shi W; Gao X; Wei X; Zhang J; Bian J; Yang M; Liu TY
    Neural Netw; 2024 Aug; 176():106354. PubMed ID: 38723308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On solving initial value problems for partial differential equations in maple.
    Thota S
    BMC Res Notes; 2021 Aug; 14(1):307. PubMed ID: 34376237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Second-Order Network Structure Based on Gradient-Enhanced Physics-Informed Neural Networks for Solving Parabolic Partial Differential Equations.
    Sun K; Feng X
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High precision compact numerical approximation in exponential form for the system of 2D quasilinear elliptic BVPs on a discrete irrational region.
    Mohanty RK; Setia N; Khurana G; Manchanda G
    MethodsX; 2022; 9():101790. PubMed ID: 35958096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.