These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39160986)

  • 1. Transmissions of an x-ray free electron laser pulse through Al: Influence of nonequilibrium electron kinetics.
    Gao C; Li Y; Jin F; Zeng J; Yuan J
    Phys Rev E; 2024 Jul; 110(1-2):015201. PubMed ID: 39160986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation.
    Royle R; Sentoku Y; Mancini RC; Paraschiv I; Johzaki T
    Phys Rev E; 2017 Jun; 95(6-1):063203. PubMed ID: 28709226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic characterization of an ultrashort-pulse-laser-driven Ar cluster target incorporating both Boltzmann and particle-in-cell models.
    Sherrill ME; Abdallah J; Csanak G; Dodd ES; Fukuda Y; Akahane Y; Aoyama M; Inoue N; Ueda H; Yamakawa K; Faenov AY; Magunov AI; Pikuz TA; Skobelev IY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066404. PubMed ID: 16906985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of nonequilibrium electron effects on the collisional ionization rate in the collisional-radiative model.
    Cho MS; Chung HK; Foord ME; Libby SB; Cho BI
    Phys Rev E; 2024 Apr; 109(4-2):045207. PubMed ID: 38755933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast time-resolved 2D imaging of laser-driven fast electron transport in solid density matter using an x-ray free electron laser.
    Sawada H; Yabuuchi T; Higashi N; Iwasaki T; Kawasaki K; Maeda Y; Izumi T; Nakagawa Y; Shigemori K; Sakawa Y; Curry CB; Frost M; Iwata N; Ogitsu T; Sueda K; Togashi T; Glenzer SH; Kemp AJ; Ping Y; Sentoku Y
    Rev Sci Instrum; 2023 Mar; 94(3):033511. PubMed ID: 37012804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray Fokker-Planck equation for paraxial imaging.
    Paganin DM; Morgan KS
    Sci Rep; 2019 Nov; 9(1):17537. PubMed ID: 31772186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse.
    Leonov A; Ksenzov D; Benediktovitch A; Feranchuk I; Pietsch U
    IUCrJ; 2014 Nov; 1(Pt 6):402-17. PubMed ID: 25485121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discussion on Electron Temperature of Gas-Discharge Plasma with Non-Maxwellian Electron Energy Distribution Function Based on Entropy and Statistical Physics.
    Akatsuka H; Tanaka Y
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-consistent system of equations for a kinetic description of the low-pressure discharges accounting for the nonlocal and collisionless electron dynamics.
    Kaganovich ID; Polomarov O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026411. PubMed ID: 14525124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of time-synchronized two-color X-ray free-electron laser pulses using phase shifters.
    Cho MH; Kang T; Yang H; Kim G; Kwon SH; Moon KJ; Nam I; Min CK; Heo H; Kim C; Kang HS; Shim CH
    Sci Rep; 2023 Aug; 13(1):13786. PubMed ID: 37612325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of high slice energy spread of an electron beam on the generation of isolated, terawatt, attosecond X-ray free-electron laser pulse.
    Shim CH; Parc YW; Kim DE
    Sci Rep; 2020 Jan; 10(1):1312. PubMed ID: 31992720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium distributions from the Fokker-Planck equation: Kappa distributions and Tsallis entropy.
    Oylukan AD; Shizgal B
    Phys Rev E; 2023 Jul; 108(1-1):014111. PubMed ID: 37583209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Electronic Non-Equilibrium on Energy Distribution and Dissipation in Aluminum Studied with an Extended Two-Temperature Model.
    Uehlein M; Weber ST; Rethfeld B
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlocal electron kinetics in a planar inductive helium discharge.
    Seo SH; Chung CW; Hong JI; Chang HY
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):7155-67. PubMed ID: 11102072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonequilibrium electron dynamics in materials driven by high-intensity x-ray pulses.
    Hau-Riege SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053102. PubMed ID: 23767638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic stimulated electronic x-ray Raman spectroscopy.
    Kimberg V; Rohringer N
    Struct Dyn; 2016 May; 3(3):034101. PubMed ID: 26958585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phenomenological model of the X-ray pulse statistics of a high-repetition-rate X-ray free-electron laser.
    Guest TW; Bean R; Kammering R; van Riessen G; Mancuso AP; Abbey B
    IUCrJ; 2023 Nov; 10(Pt 6):708-719. PubMed ID: 37782462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A micro channel-cut crystal X-ray monochromator for a self-seeded hard X-ray free-electron laser.
    Osaka T; Inoue I; Kinjo R; Hirano T; Morioka Y; Sano Y; Yamauchi K; Yabashi M
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1496-1502. PubMed ID: 31490137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical tracking of resonance-enhanced multiple ionization pathways in X-ray free-electron laser pulses.
    Ho PJ; Bostedt C; Schorb S; Young L
    Phys Rev Lett; 2014 Dec; 113(25):253001. PubMed ID: 25554879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.