These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39160995)

  • 21. Efficient parameter sensitivity computation for spatially extended reaction networks.
    Lester C; Yates CA; Baker RE
    J Chem Phys; 2017 Jan; 146(4):044106. PubMed ID: 28147517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coarse-grained lattice kinetic Monte Carlo simulation of systems of strongly interacting particles.
    Dai J; Seider WD; Sinno T
    J Chem Phys; 2008 May; 128(19):194705. PubMed ID: 18500884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multiscale spatial Monte Carlo simulations: multigriding, computational singular perturbation, and hierarchical stochastic closures.
    Chatterjee A; Vlachos DG
    J Chem Phys; 2006 Feb; 124(6):64110. PubMed ID: 16483199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pSpatiocyte: a high-performance simulator for intracellular reaction-diffusion systems.
    Arjunan SNV; Miyauchi A; Iwamoto K; Takahashi K
    BMC Bioinformatics; 2020 Jan; 21(1):33. PubMed ID: 31996129
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained kinetic Monte Carlo models: Complex lattices, multicomponent systems, and homogenization at the stochastic level.
    Collins SD; Chatterjee A; Vlachos DG
    J Chem Phys; 2008 Nov; 129(18):184101. PubMed ID: 19045380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coarse-grained Monte Carlo simulations of non-equilibrium systems.
    Liu X; Crocker JC; Sinno T
    J Chem Phys; 2013 Jun; 138(24):244111. PubMed ID: 23822231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice kinetic Monte Carlo simulations of convective-diffusive systems.
    Flamm MH; Diamond SL; Sinno T
    J Chem Phys; 2009 Mar; 130(9):094904. PubMed ID: 19275421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations.
    Rensonnet G; Scherrer B; Girard G; Jankovski A; Warfield SK; Macq B; Thiran JP; Taquet M
    Neuroimage; 2019 Jan; 184():964-980. PubMed ID: 30282007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.
    Lecca P
    MethodsX; 2018; 5():204-216. PubMed ID: 29785391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation --- Part I: Core algorithm and validation.
    Tsai MY; Tian Z; Qin N; Yan C; Lai Y; Hung SH; Chi Y; Jia X
    Med Phys; 2020 Apr; 47(4):1958-1970. PubMed ID: 31971258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles.
    Szymańska P; Kochańczyk M; Miękisz J; Lipniacki T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022702. PubMed ID: 25768526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-dimensional, mesoscopic Monte Carlo simulations of inhomogeneous reaction-drift-diffusion systems on graphics-processing units.
    Vigelius M; Meyer B
    PLoS One; 2012; 7(4):e33384. PubMed ID: 22506001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
    Lee S; Psarellis YM; Siettos CI; Kevrekidis IG
    J Math Biol; 2023 Jun; 87(1):15. PubMed ID: 37341784
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Rao-Blackwellized particle filter for joint parameter estimation and biomass tracking in a stochastic predator-prey system.
    Martín-Fernández L; Gilioli G; Lanzarone E; Miguez J; Pasquali S; Ruggeri F; Ruiz DP
    Math Biosci Eng; 2014 Jun; 11(3):573-97. PubMed ID: 24506552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective reaction rates for diffusion-limited reaction cycles.
    Nałęcz-Jawecki P; Szymańska P; Kochańczyk M; Miękisz J; Lipniacki T
    J Chem Phys; 2015 Dec; 143(21):215102. PubMed ID: 26646890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm.
    Ridgway D; Broderick G; Lopez-Campistrous A; Ru'aini M; Winter P; Hamilton M; Boulanger P; Kovalenko A; Ellison MJ
    Biophys J; 2008 May; 94(10):3748-59. PubMed ID: 18234819
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations.
    Arampatzis G; Katsoulakis MA
    J Chem Phys; 2014 Mar; 140(12):124108. PubMed ID: 24697425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact.
    Lushnikov PM; Chen N; Alber M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061904. PubMed ID: 19256865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validating a Coarse-Grained Voltage Activation Model by Comparing Its Performance to the Results of Monte Carlo Simulations.
    Lee M; Kolev V; Warshel A
    J Phys Chem B; 2017 Dec; 121(50):11284-11291. PubMed ID: 29156125
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive tau-leaping methods for microscopic-lattice kinetic Monte Carlo simulations.
    Che T; Zhou Y; Han X; Najm HN
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39177088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.