These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39161302)
1. Association in Like-Charged Surfactant-Nanoparticle Systems: Interfacial and Bulk Effects. Gowtham V M; Deodhar S; Thampi SP; Basavaraj MG Langmuir; 2024 Aug; 40(33):17410-17422. PubMed ID: 39161302 [TBL] [Abstract][Full Text] [Related]
2. Oppositely charged surfactants and nanoparticles at the air-water interface: Influence of surfactant to nanoparticle ratio. Eftekhari M; Schwarzenberger K; Karakashev SI; Grozev NA; Eckert K J Colloid Interface Sci; 2024 Jan; 653(Pt B):1388-1401. PubMed ID: 37801849 [TBL] [Abstract][Full Text] [Related]
3. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface. Jin J; Li X; Geng J; Jing D Phys Chem Chem Phys; 2018 Jun; 20(22):15223-15235. PubMed ID: 29789835 [TBL] [Abstract][Full Text] [Related]
4. Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants. Tian C; Feng J; Prud'homme RK J Colloid Interface Sci; 2020 Sep; 575():416-424. PubMed ID: 32388288 [TBL] [Abstract][Full Text] [Related]
5. Novel Oil-in-Water Emulsions Stabilised by Ionic Surfactant and Similarly Charged Nanoparticles at Very Low Concentrations. Xu M; Jiang J; Pei X; Song B; Cui Z; Binks BP Angew Chem Int Ed Engl; 2018 Jun; 57(26):7738-7742. PubMed ID: 29693309 [TBL] [Abstract][Full Text] [Related]
6. Mixtures of latex particles and the surfactant of opposite charge used as interface stabilizers--influence of particle contact angle, zeta potential, flocculation and shear energy. Deleurence R; Parneix C; Monteux C Soft Matter; 2014 Sep; 10(36):7088-95. PubMed ID: 25008289 [TBL] [Abstract][Full Text] [Related]
7. Reversible Adsorption of Nanoparticles at Surfactant-Laden Liquid-Liquid Interfaces. Smits J; Vieira F; Bisswurn B; Rezwan K; Maas M Langmuir; 2019 Aug; 35(34):11089-11098. PubMed ID: 31368712 [TBL] [Abstract][Full Text] [Related]
8. Effect of charged colloidal particles on adsorption of surfactants at oil-water interface. Wang W; Zhou Z; Nandakumar K; Xu Z; Masliyah JH J Colloid Interface Sci; 2004 Jun; 274(2):625-30. PubMed ID: 15144838 [TBL] [Abstract][Full Text] [Related]
9. Carbon Soot-Ionic Surfactant Mixed Layers at Water/Air Interfaces. Zabiegaj D; Santini E; Guzmán E; Ferrari M; Liggieri L; Ravera F J Nanosci Nanotechnol; 2015 May; 15(5):3618-25. PubMed ID: 26504984 [TBL] [Abstract][Full Text] [Related]
10. Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Akanno A; Guzmán E; Fernández-Peña L; Ortega F; G Rubio R Molecules; 2019 Sep; 24(19):. PubMed ID: 31547491 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of oppositely charged polyelectrolyte/surfactant complexes at the air/water interface: formation of interfacial gels. Monteux C; Williams CE; Meunier J; Anthony O; Bergeron V Langmuir; 2004 Jan; 20(1):57-63. PubMed ID: 15745000 [TBL] [Abstract][Full Text] [Related]
12. Structure Identification of Adsorbed Anionic-Nonionic Binary Surfactant Layers Based on Interfacial Shear Rheology Studies and Surface Tension Isotherms. Oikonomidou O; Kostoglou M; Karapantsios T Molecules; 2023 Feb; 28(5):. PubMed ID: 36903522 [TBL] [Abstract][Full Text] [Related]
13. Effect of surfactant tail length and ionic strength on the interfacial properties of nanoparticle-surfactant complexes. Kirby SM; Anna SL; Walker LM Soft Matter; 2017 Dec; 14(1):112-123. PubMed ID: 29214259 [TBL] [Abstract][Full Text] [Related]
14. Interfacial complexation of a neutral amphiphilic 'tardigrade' co-polymer with a cationic surfactant: Transition from synergy to competition. Slastanova A; Campbell RA; Islas L; Welbourn RJL; R P Webster J; Vaccaro M; Chen M; Robles E; Briscoe WH J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1064-1076. PubMed ID: 34487929 [TBL] [Abstract][Full Text] [Related]
15. Insight on Methane Foam Stability and Texture via Adsorption of Surfactants on Oppositely Charged Nanoparticles. Doroudian Rad M; Telmadarreie A; Xu L; Dong M; Bryant SL Langmuir; 2018 Nov; 34(47):14274-14285. PubMed ID: 30372614 [TBL] [Abstract][Full Text] [Related]
16. Interaction Mechanism of Different Surfactants with Casein: A Perspective on Bulk and Interfacial Phase Behavior. Tian Q; Lai L; Zhou Z; Mei P; Lu Q; Wang Y; Xiang D; Liu Y J Agric Food Chem; 2019 Jun; 67(22):6336-6349. PubMed ID: 31117492 [TBL] [Abstract][Full Text] [Related]
17. Coming to Order: Adsorption and Structure of Nonionic Polymer at the Oil/Water Interface as Influenced by Cationic and Anionic Surfactants. Altman RM; Richmond GL Langmuir; 2020 Mar; 36(8):1975-1984. PubMed ID: 32050767 [TBL] [Abstract][Full Text] [Related]
18. Oil-in-Water emulsions stabilized by alumina nanoparticles with organic electrolytes: Fate of particles. Zheng R; Tian J; Binks BP; Cui Z; Xia W; Jiang J J Colloid Interface Sci; 2022 Dec; 627():749-760. PubMed ID: 35878465 [TBL] [Abstract][Full Text] [Related]
19. Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina. Mousseau F; Le Borgne R; Seyrek E; Berret JF Langmuir; 2015 Jul; 31(26):7346-54. PubMed ID: 26075579 [TBL] [Abstract][Full Text] [Related]
20. The influence of negatively charged silica nanoparticles on the surface properties of anionic surfactants: electrostatic repulsion or the effect of ionic strength? Eftekhari M; Schwarzenberger K; Javadi A; Eckert K Phys Chem Chem Phys; 2020 Jan; 22(4):2238-2248. PubMed ID: 31915756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]