These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39161302)
21. The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions. Katepalli H; John VT; Bose A Langmuir; 2013 Jun; 29(23):6790-7. PubMed ID: 23692631 [TBL] [Abstract][Full Text] [Related]
22. Surface adsorption of oppositely charged C14TAB-PAMPS mixtures at the air/water interface and the impact on foam film stability. Fauser H; von Klitzing R; Campbell RA J Phys Chem B; 2015 Jan; 119(1):348-58. PubMed ID: 25474720 [TBL] [Abstract][Full Text] [Related]
24. Interfacial microgels formed by oppositely charged polyelectrolytes and surfactants. 1. Influence of polyelectrolyte molecular weight. Monteux C; Llauro MF; Baigl D; Williams CE; Anthony O; Bergeron V Langmuir; 2004 Jun; 20(13):5358-66. PubMed ID: 15986674 [TBL] [Abstract][Full Text] [Related]
25. Wettability of polytetrafluoroethylene by aqueous solutions of two anionic surfactant mixtures. Zdziennicka A; Jańczuk B; Wójcik W J Colloid Interface Sci; 2003 Dec; 268(1):200-7. PubMed ID: 14611789 [TBL] [Abstract][Full Text] [Related]
26. Bending elasticity of charged surfactant layers: the effect of mixing. Bergström LM Langmuir; 2006 Aug; 22(16):6796-813. PubMed ID: 16863224 [TBL] [Abstract][Full Text] [Related]
27. Interactions between surfactants and silver nanoparticles of varying charge. Hedberg J; Lundin M; Lowe T; Blomberg E; Wold S; Wallinder IO J Colloid Interface Sci; 2012 Mar; 369(1):193-201. PubMed ID: 22204969 [TBL] [Abstract][Full Text] [Related]
28. Effect of nanoparticles on the interfacial properties of liquid/liquid and liquid/air surface layers. Ravera F; Santini E; Loglio G; Ferrari M; Liggieri L J Phys Chem B; 2006 Oct; 110(39):19543-51. PubMed ID: 17004817 [TBL] [Abstract][Full Text] [Related]
29. Photoresponsive surfactants in microgel dispersions. Bradley M; Vincent B; Warren N; Eastoe J; Vesperinas A Langmuir; 2006 Jan; 22(1):101-5. PubMed ID: 16378407 [TBL] [Abstract][Full Text] [Related]
30. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles. Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425 [TBL] [Abstract][Full Text] [Related]
32. The Role of Electrostatic Repulsion on Increasing Surface Activity of Anionic Surfactants in the Presence of Hydrophilic Silica Nanoparticles. Vatanparast H; Shahabi F; Bahramian A; Javadi A; Miller R Sci Rep; 2018 May; 8(1):7251. PubMed ID: 29740036 [TBL] [Abstract][Full Text] [Related]
33. Effect of Different Surfactants on the Interfacial Behavior of the n-Hexane-Water System in the Presence of Silica Nanoparticles. Biswal NR; Rangera N; Singh JK J Phys Chem B; 2016 Jul; 120(29):7265-74. PubMed ID: 27367433 [TBL] [Abstract][Full Text] [Related]
34. pH-Dependent Interfacial Tension and Dilatational Modulus Synergism of Oil-Soluble Fatty Acid and Water-Soluble Cationic Surfactants at the Oil/Water Interface. Hsieh TL; Law S; Garoff S; Tilton RD Langmuir; 2021 Oct; 37(39):11573-11581. PubMed ID: 34554763 [TBL] [Abstract][Full Text] [Related]
35. Surface deposition and phase behavior of oppositely charged polyion/surfactant ion complexes. 1. Cationic guar versus cationic hydroxyethylcellulose in mixtures with anionic surfactants. Svensson AV; Huang L; Johnson ES; Nylander T; Piculell L ACS Appl Mater Interfaces; 2009 Nov; 1(11):2431-42. PubMed ID: 20356112 [TBL] [Abstract][Full Text] [Related]
36. A detailed assessment on the interaction of sodium alginate with a surface-active ionic liquid and a conventional surfactant: a multitechnique approach. Das S; Ghosh S Phys Chem Chem Phys; 2022 Jun; 24(22):13738-13762. PubMed ID: 35612295 [TBL] [Abstract][Full Text] [Related]
37. Sonochemical degradation of surfactants with different charge types: Effect of the critical micelle concentration in the interfacial region of the cavity. Nanzai B; Suzuki S; Okitsu K Ultrason Sonochem; 2021 Mar; 71():105354. PubMed ID: 33053489 [TBL] [Abstract][Full Text] [Related]
39. Effect of polyelectrolyte-surfactant complexation on Marangoni transport at a liquid-liquid interface. Dunér G; Kim M; Tilton RD; Garoff S; Przybycien TM J Colloid Interface Sci; 2016 Apr; 467():105-114. PubMed ID: 26775240 [TBL] [Abstract][Full Text] [Related]
40. Versatile Diblock Polyampholytes Can Form Two Types of Charged and Internally Structured Core-Shell Particles by Complexation with Cationic or Anionic Surfactants. Trindade SG; Piculell L; Loh W Langmuir; 2022 Mar; 38(9):2906-2918. PubMed ID: 35189060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]