These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 39161440)

  • 1. Recent advances in enzymatic carbon-carbon bond formation.
    Zhao H
    RSC Adv; 2024 Aug; 14(36):25932-25974. PubMed ID: 39161440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Organocatalyzed Domino C-C Bond-Forming Reactions.
    Evans CS; Davis LO
    Molecules; 2017 Dec; 23(1):. PubMed ID: 29295474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Morita-Baylis-Hillman reaction: insights into asymmetry and reaction mechanisms by electrospray ionization mass spectrometry.
    Carrasco-Sanchez V; Simirgiotis MJ; Santos LS
    Molecules; 2009 Oct; 14(10):3989-4021. PubMed ID: 19924044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions.
    Miao Y; Rahimi M; Geertsema EM; Poelarends GJ
    Curr Opin Chem Biol; 2015 Apr; 25():115-23. PubMed ID: 25598537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective, organocatalytic Morita-Baylis-Hillman and Aza-Morita-Baylis-Hillman reactions: stereochemical issues.
    Mansilla J; Saá JM
    Molecules; 2010 Feb; 15(2):709-34. PubMed ID: 20335941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Activities of Morita-Baylis-Hillman Adducts (MBHA).
    Ferreira LAMP; de Lima LM; Ferreira LKDP; Bernardo LR; Castro A; Lima Junior CG; de Almeida Vasconcellos MLA; Piuvezam MR
    Mini Rev Med Chem; 2023; 23(17):1691-1710. PubMed ID: 36733204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of 2,2-Disubstituted Dihydro-1,4-benzothiazines from Morita-Baylis-Hillman Ketones by an Oxidative Cyclization.
    Jha AK; Kumari R; Easwar S
    J Org Chem; 2022 May; 87(9):5760-5772. PubMed ID: 35441520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita-Baylis-Hillman and related reactions.
    Wei Y; Shi M
    Acc Chem Res; 2010 Jul; 43(7):1005-18. PubMed ID: 20232829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights and the role of cocatalysts in Aza-Morita-Baylis-hillman and Morita-Baylis-Hillman reactions.
    Roy D; Patel C; Sunoj RB
    J Org Chem; 2009 Sep; 74(18):6936-43. PubMed ID: 19697897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Journey Heading towards Enantioselective Synthesis Assisted by Organocatalysis.
    Kaur J; Chauhan P; Singh S; Chimni SS
    Chem Rec; 2018 Feb; 18(2):137-153. PubMed ID: 28851023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral BINOL-derived phosphoric acids: privileged Brønsted acid organocatalysts for C-C bond formation reactions.
    Zamfir A; Schenker S; Freund M; Tsogoeva SB
    Org Biomol Chem; 2010 Dec; 8(23):5262-76. PubMed ID: 20820680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives.
    Juma WP; Nyoni D; Brady D; Bode ML
    Chembiochem; 2022 Apr; 23(7):e202100527. PubMed ID: 34822736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress and prospects in the organocatalytic Morita-Baylis-Hillman reaction.
    Maneesha M; Haritha SH; Aneeja T; Anilkumar G
    RSC Adv; 2024 May; 14(21):14949-14963. PubMed ID: 38720983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent extensions of the Morita-Baylis-Hillman reaction.
    Ma GN; Jiang JJ; Shi M; Wei Y
    Chem Commun (Camb); 2009 Oct; (37):5496-514. PubMed ID: 19753340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organocatalytic Synthesis of Highly Functionalized Heterocycles by Enantioselective aza-Morita-Baylis-Hillman-Type Domino Reactions.
    Takizawa S
    Chem Pharm Bull (Tokyo); 2020; 68(4):299-315. PubMed ID: 32238648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereocontrolled Construction of Spirooxindole-Containing 5,6,7,8-Tetrahydropyrrolo[1,2-
    Yin P; Zhou Z; Shi L; Xiang C; Ye L; Han M; Shi Z; Zhao Z; Li X
    Org Lett; 2024 Mar; 26(11):2152-2157. PubMed ID: 38456394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards organo-click chemistry: development of organocatalytic multicomponent reactions through combinations of aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen cycloaddition reactions.
    Ramachary DB; Barbas CF
    Chemistry; 2004 Oct; 10(21):5323-31. PubMed ID: 15390208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel carbon-carbon bond formations for biocatalysis.
    Resch V; Schrittwieser JH; Siirola E; Kroutil W
    Curr Opin Biotechnol; 2011 Dec; 22(6):793-9. PubMed ID: 21354781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meldrum's acids and 5-alkylidene Meldrum's acids in catalytic carbon-carbon bond-forming processes.
    Dumas AM; Fillion E
    Acc Chem Res; 2010 Mar; 43(3):440-54. PubMed ID: 20000793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Access to 3-Aminomethylated Maleimides via a Phosphine-Catalyzed Aza-Morita-Baylis-Hillman Type Coupling.
    Wang WK; Bao FY; Wang ST; Zhao SY
    J Org Chem; 2023 Jun; 88(11):7489-7497. PubMed ID: 37114576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.