These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39162304)
1. Deciphering the Decomposition Mechanisms of Ether and Fluorinated Ether Electrolytes on Lithium Metal Surfaces: Insights from CMD and AIMD Simulations. Du F; Ye T; Lv T; Zhang R; Liu Y; Cai S; Zhao J; Zhao B; Liu J; Peng P J Phys Chem B; 2024 Aug; 128(34):8170-8182. PubMed ID: 39162304 [TBL] [Abstract][Full Text] [Related]
2. Multiscale Simulation of Solid Electrolyte Interface Formation in Fluorinated Diluted Electrolytes with Lithium Anodes. Yu P; Sun Q; Liu Y; Ma B; Yang H; Xie M; Cheng T ACS Appl Mater Interfaces; 2022 Feb; 14(6):7972-7979. PubMed ID: 35129322 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous Stabilization of the Solid/Cathode Electrolyte Interface in Lithium Metal Batteries by a New Weakly Solvating Electrolyte. Pham TD; Lee KK Small; 2021 May; 17(20):e2100133. PubMed ID: 33797203 [TBL] [Abstract][Full Text] [Related]
4. Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries. Sun Z; Yang J; Xu H; Jiang C; Niu Y; Lian X; Liu Y; Su R; Liu D; Long Y; Wang M; Mao J; Yang H; Cui B; Xiao Y; Chen G; Zhang Q; Xing Z; Pan J; Wu G; Chen W Nanomicro Lett; 2024 Mar; 16(1):141. PubMed ID: 38436814 [TBL] [Abstract][Full Text] [Related]
5. Effect of the Electric Double Layer (EDL) in Multicomponent Electrolyte Reduction and Solid Electrolyte Interphase (SEI) Formation in Lithium Batteries. Wu Q; McDowell MT; Qi Y J Am Chem Soc; 2023 Feb; 145(4):2473-2484. PubMed ID: 36689617 [TBL] [Abstract][Full Text] [Related]
6. Preferential decomposition of the major anion in a dual-salt electrolyte facilitates the formation of organic-inorganic composite solid electrolyte interphase. Qi F; Yu P; Zhou Q; Liu Y; Sun Q; Ma B; Ren X; Cheng T J Chem Phys; 2023 Mar; 158(10):104704. PubMed ID: 36922150 [TBL] [Abstract][Full Text] [Related]
7. Inner Lithium Fluoride (LiF)-Rich Solid Electrolyte Interphase Enabled by a Smaller Solvation Sheath for Fast-Charging Lithium Batteries. Guo H; Tian Y; Liu Y; Bai Y; Wu J; Kang F; Li B ACS Appl Mater Interfaces; 2023 Jan; 15(1):1201-1209. PubMed ID: 36576328 [TBL] [Abstract][Full Text] [Related]
8. Role of Inorganic Surface Layer on Solid Electrolyte Interphase Evolution at Li-Metal Anodes. Kamphaus EP; Angarita-Gomez S; Qin X; Shao M; Engelhard M; Mueller KT; Murugesan V; Balbuena PB ACS Appl Mater Interfaces; 2019 Aug; 11(34):31467-31476. PubMed ID: 31368685 [TBL] [Abstract][Full Text] [Related]
9. Fluorinated Boron-Based Anions for Higher Voltage Li Metal Battery Electrolytes. Clarke-Hannaford J; Breedon M; RĂ¼ther T; Spencer MJS Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578707 [TBL] [Abstract][Full Text] [Related]
10. Origin of dendrite-free lithium deposition in concentrated electrolytes. Chen Y; Li M; Liu Y; Jie Y; Li W; Huang F; Li X; He Z; Ren X; Chen Y; Meng X; Cheng T; Gu M; Jiao S; Cao R Nat Commun; 2023 May; 14(1):2655. PubMed ID: 37160951 [TBL] [Abstract][Full Text] [Related]
11. Tri-anion solvation structure electrolyte improves the electrochemical performance of Li||LiNi0.8Co0.1Mn0.1O2 batteries. Huang L; Sun M; Xie Y; Huang H; Huang Y; Chen H; Liu S; Dai P; Huang R; Sun S ChemSusChem; 2024 Jul; ():e202401029. PubMed ID: 39075647 [TBL] [Abstract][Full Text] [Related]
12. Binding FSI Qin Y; Wang H; Zhou J; Li R; Jiang C; Wan Y; Wang X; Chen Z; Wang X; Liu Y; Guo B; Wang D Angew Chem Int Ed Engl; 2024 May; 63(19):e202402456. PubMed ID: 38415324 [TBL] [Abstract][Full Text] [Related]
13. Anion-Dominated Solvation in Low-Concentration Electrolytes Promotes Inorganic-Rich Interphase Formation in Lithium Metal Batteries. Pan J; Yuan H; Wu J; Li M; Wu X; Zeng W; Wen Z; Qian R Small; 2024 Nov; 20(46):e2404260. PubMed ID: 39105466 [TBL] [Abstract][Full Text] [Related]
14. Temperature-dependent interphase formation and Li Weng S; Zhang X; Yang G; Zhang S; Ma B; Liu Q; Liu Y; Peng C; Chen H; Yu H; Fan X; Cheng T; Chen L; Li Y; Wang Z; Wang X Nat Commun; 2023 Jul; 14(1):4474. PubMed ID: 37491340 [TBL] [Abstract][Full Text] [Related]
15. DFT-ReaxFF hybrid molecular dynamics investigation of the decomposition effects of localized high-concentration electrolyte in lithium metal batteries: LiFSI/DME/TFEO. Lu Y; Sun Q; Liu Y; Yu P; Zhang Y; Lu J; Huang H; Yang H; Cheng T Phys Chem Chem Phys; 2022 Aug; 24(31):18684-18690. PubMed ID: 35895316 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of lithium metal in concentrated electrolytes: effects of electrode potential and solid electrolyte interphase formation. Pradhan A; Nishimura S; Kondo Y; Kaneko T; Katayama Y; Sodeyama K; Yamada Y Faraday Discuss; 2024 Oct; 253(0):314-328. PubMed ID: 39016534 [TBL] [Abstract][Full Text] [Related]
17. Stable Anion-Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Li T; Zhang XQ; Yao N; Yao YX; Hou LP; Chen X; Zhou MY; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2021 Oct; 60(42):22683-22687. PubMed ID: 34399018 [TBL] [Abstract][Full Text] [Related]
18. The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte with Enhanced Charge Transfer for LiF-Rich SEI Generation in Lithium Metal Batteries. Liang W; Zhou X; Zhang B; Zhao Z; Song X; Chen K; Wang L; Ma Z; Liu J Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202320149. PubMed ID: 38430213 [TBL] [Abstract][Full Text] [Related]
19. Beyond LiF: Tailoring Li Zeng H; Yu K; Li J; Yuan M; Wang J; Wang Q; Lai A; Jiang Y; Yan X; Zhang G; Xu H; Wang J; Huang W; Wang C; Deng Y; Chi SS ACS Nano; 2024 Jan; 18(3):1969-1981. PubMed ID: 38206167 [TBL] [Abstract][Full Text] [Related]
20. Revealing the Anion-Solvent Interaction for Ultralow Temperature Lithium Metal Batteries. Xu J; Koverga V; Phan A; Min Li A; Zhang N; Baek M; Jayawardana C; Lucht BL; Ngo AT; Wang C Adv Mater; 2024 Feb; 36(7):e2306462. PubMed ID: 38013502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]