These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39162365)

  • 1. Harvesting Enhanced Blue Energy in Charged Nanochannels Using Semidiluted Polyelectrolyte Solution.
    Mehta SK; Padhi P; Wongwises S; Mondal PK
    Langmuir; 2024 Sep; 40(35):18750-18759. PubMed ID: 39162365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Salinity Gradient-Induced Power Generation in Nanochannels: The Role of pH-Sensitive Polyelectrolyte Layers.
    Mehta SK; Raj AR; Mondal PK
    Langmuir; 2023 Sep; 39(35):12302-12312. PubMed ID: 37471700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating.
    Nekoubin N; Sadeghi A; Chakraborty S
    Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximizing blue energy: the role of ion partitioning in nanochannel systems.
    Mehta SK; Deb D; Nandy A; Shen AQ; Mondal PK
    Phys Chem Chem Phys; 2024 Jul; 26(30):20550-20561. PubMed ID: 39036903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion Transport in Intelligent Nanochannels: A Comparative Analysis of the Role of Electric Field.
    Khatibi M; Ashrafizadeh SN
    Anal Chem; 2023 Dec; 95(49):18188-18198. PubMed ID: 38019778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces.
    Khatibi M; Sadeghi A; Ashrafizadeh SN
    Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Energy Generation and Flow Enhancement (
    Sachar HS; Pial TH; Sivasankar VS; Das S
    ACS Nano; 2021 Nov; 15(11):17337-17347. PubMed ID: 34605243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration.
    Chen G; Sachar HS; Das S
    Soft Matter; 2018 Jun; 14(25):5246-5255. PubMed ID: 29888349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel.
    Jian Y; Li F; Liu Y; Chang L; Liu Q; Yang L
    Colloids Surf B Biointerfaces; 2017 Aug; 156():405-413. PubMed ID: 28551575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-controllable Ion-Gated Metal-Organic Framework MIL-53 Sub-nanochannels for Efficient Osmotic Energy Generation.
    Liu Y; Chen Y; Guo Y; Wang X; Ding S; Sun X; Wang H; Zhu Y; Jiang L
    ACS Nano; 2022 Oct; 16(10):16343-16352. PubMed ID: 36226827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat Transport of Electrokinetic Flow in Slit Soft Nanochannels.
    Wang Z; Jian Y
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30621067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry.
    Heydari A; Khatibi M; Ashrafizadeh SN
    Phys Chem Chem Phys; 2023 Oct; 25(39):26716-26736. PubMed ID: 37779455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters.
    Chanda S; Sinha S; Das S
    Soft Matter; 2014 Oct; 10(38):7558-68. PubMed ID: 25112236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-driven energy conversion of conical nanochannels: Anomalous dependence of power generated and efficiency on pH.
    Lin TW; Hsu JP
    J Colloid Interface Sci; 2020 Mar; 564():491-498. PubMed ID: 32000071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyelectrolyte adsorption in single small nanochannel by layer-by-layer method.
    Li J; Li D
    J Colloid Interface Sci; 2020 Mar; 561():1-10. PubMed ID: 31812855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels.
    Karimzadeh M; Khatibi M; Ashrafizadeh SN; Mondal PK
    Phys Chem Chem Phys; 2022 Aug; 24(34):20303-20317. PubMed ID: 35979759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion.
    Hou S; Ji W; Chen J; Teng Y; Wen L; Jiang L
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9925-9930. PubMed ID: 33527640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting.
    Bang KR; Kwon C; Lee H; Kim S; Cho ES
    ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.