These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 39162499)
1. Dynamic distribution of gut microbiota-metabolites during post-weaning longissimus dorsi muscle development in Ningxiang pigs. Su J; Li J; Azad MAK; Wang W; Luo Z; Wang J; Yin J; Yin Y; Tan B; Chen J Microbiol Spectr; 2024 Oct; 12(10):e0081324. PubMed ID: 39162499 [TBL] [Abstract][Full Text] [Related]
2. CLA improves the lipo-nutritional quality of pork and regulates the gut microbiota in Heigai pigs. Wang L; Zhang S; Huang Y; You W; Zhou Y; Chen W; Sun Y; Yi W; Sun H; Xie J; Zhu X; Zheng Q; Shan T Food Funct; 2022 Nov; 13(23):12093-12104. PubMed ID: 36377505 [TBL] [Abstract][Full Text] [Related]
3. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition. Zhou J; Zhang Y; Wu J; Qiao M; Xu Z; Peng X; Mei S J Proteomics; 2021 Jun; 241():104235. PubMed ID: 33894376 [TBL] [Abstract][Full Text] [Related]
4. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs. Wang Y; Ma C; Sun Y; Li Y; Kang L; Jiang Y BMC Genomics; 2017 Oct; 18(1):780. PubMed ID: 29025412 [TBL] [Abstract][Full Text] [Related]
5. 16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. Fang S; Xiong X; Su Y; Huang L; Chen C BMC Microbiol; 2017 Jul; 17(1):162. PubMed ID: 28724349 [TBL] [Abstract][Full Text] [Related]
6. TMT-labeled quantitative proteomic analyses on the longissimus dorsi to identify the proteins underlying intramuscular fat content in pigs. Ma C; Wang W; Wang Y; Sun Y; Kang L; Zhang Q; Jiang Y J Proteomics; 2020 Feb; 213():103630. PubMed ID: 31881348 [TBL] [Abstract][Full Text] [Related]
7. Dietary probiotic and synbiotic supplementation starting from maternal gestation improves muscular lipid metabolism in offspring piglets by reshaping colonic microbiota and metabolites. Zhu Q; Azad MAK; Li R; Li C; Liu Y; Yin Y; Kong X mSystems; 2024 Jun; 9(6):e0004824. PubMed ID: 38767377 [TBL] [Abstract][Full Text] [Related]
8. Distinctive genes determine different intramuscular fat and muscle fiber ratios of the longissimus dorsi muscles in Jinhua and landrace pigs. Wu T; Zhang Z; Yuan Z; Lo LJ; Chen J; Wang Y; Peng J PLoS One; 2013; 8(1):e53181. PubMed ID: 23301040 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome Analysis Reveals the Age-Related Developmental Dynamics Pattern of the Liufu S; Lan Q; Liu X; Chen B; Xu X; Ai N; Li X; Yu Z; Ma H Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239410 [TBL] [Abstract][Full Text] [Related]
10. TMT-labeled quantitative malonylome analysis on the longissimus dorsi muscle of Laiwu pigs reveals the role of ACOT7 in fat deposition. Wang W; Ma C; Zhang Q; Jiang Y J Proteomics; 2024 Apr; 298():105129. PubMed ID: 38395145 [TBL] [Abstract][Full Text] [Related]
11. The cecal ecosystem is a great contributor to intramuscular fat deposition in broilers. Wen C; Gou Q; Gu S; Huang Q; Sun C; Zheng J; Yang N Poult Sci; 2023 Apr; 102(4):102568. PubMed ID: 36889043 [TBL] [Abstract][Full Text] [Related]
12. Subcutaneous and intramuscular fat transcriptomes show large differences in network organization and associations with adipose traits in pigs. Zhang Y; Sun Y; Wu Z; Xiong X; Zhang J; Ma J; Xiao S; Huang L; Yang B Sci China Life Sci; 2021 Oct; 64(10):1732-1746. PubMed ID: 33527326 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome Profiling of Different Developmental Stages on Longissimus Dorsi to Identify Genes Underlying Intramuscular Fat Content in Wannanhua Pigs. Li X; Yang Y; Li L; Ren M; Zhou M; Li S Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107661 [TBL] [Abstract][Full Text] [Related]
14. Metabolic and microbial mechanisms related to the effects of dietary wheat levels on intramuscular fat content in finishing pigs. Wang J; Zhu H; Li H; Xia S; Zhang F; Liu C; Zheng W; Yao W Meat Sci; 2024 Oct; 216():109574. PubMed ID: 38909450 [TBL] [Abstract][Full Text] [Related]
15. Whole-Transcriptome Analysis Sheds Light on the Biological Contexts of Intramuscular Fat Deposition in Ningxiang Pigs. Jin Z; Gao H; Fu Y; Ren R; Deng X; Chen Y; Hou X; Wang Q; Song G; Fan N; Ma H; Yin Y; Xu K Genes (Basel); 2024 May; 15(5):. PubMed ID: 38790271 [TBL] [Abstract][Full Text] [Related]
16. Exploring the Possible Link between the Gut Microbiome and Fat Deposition in Pigs. Zhao G; Xiang Y; Wang X; Dai B; Zhang X; Ma L; Yang H; Lyu W Oxid Med Cell Longev; 2022; 2022():1098892. PubMed ID: 35103093 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome analysis in comparing carcass and meat quality traits of Jiaxing Black Pig and Duroc × Duroc × Berkshire × Jiaxing Black Pig crosses. Chen Q; Zhang W; Cai J; Ni Y; Xiao L; Zhang J Gene; 2022 Jan; 808():145978. PubMed ID: 34592352 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of Transcriptome and Metabolome Concerning Intramuscular Fat Content in Beijing Black Pigs. Hou X; Zhang R; Yang M; Niu N; Zong W; Yang L; Li H; Hou R; Wang X; Wang L; Liu X; Shi L; Zhao F; Wang L; Zhang L J Agric Food Chem; 2023 Oct; 71(42):15874-15883. PubMed ID: 37847170 [TBL] [Abstract][Full Text] [Related]
19. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG). Fang S; Chen X; Pan J; Chen Q; Zhou L; Wang C; Xiao T; Gan QF BMC Microbiol; 2020 May; 20(1):116. PubMed ID: 32410629 [TBL] [Abstract][Full Text] [Related]
20. Design of a low-density SNP panel for intramuscular fat content and fatty acid composition of backfat in free-range Iberian pigs. Palma-Granados P; García-Casco JM; Caraballo C; Vázquez-Ortego P; Gómez-Carballar F; Sánchez-Esquiliche F; Óvilo C; Muñoz M J Anim Sci; 2023 Jan; 101():. PubMed ID: 36930061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]