These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 39162873)

  • 41. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans.
    Manoharan RK; Lee JH; Kim YG; Kim SI; Lee J
    Biofouling; 2017 Feb; 33(2):143-155. PubMed ID: 28155334
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanistic insights into Candida biofilm eradication potential of eucalyptol.
    Gupta P; Pruthi V; Poluri KM
    J Appl Microbiol; 2021 Jul; 131(1):105-123. PubMed ID: 33226719
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydroquinones Including Tetrachlorohydroquinone Inhibit Candida albicans Biofilm Formation by Repressing Hyphae-Related Genes.
    Kim YG; Lee JH; Park S; Khadke SK; Shim JJ; Lee J
    Microbiol Spectr; 2022 Oct; 10(5):e0253622. PubMed ID: 36190417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In-vitro evaluation of virulence markers and antifungal resistance of clinical Candida albicans strains isolated from Karachi, Pakistan.
    Jabeen G; Naz SA; Rangel DEN; Jabeen N; Shafique M; Yasmeen K
    Fungal Biol; 2023; 127(7-8):1241-1249. PubMed ID: 37495314
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans.
    Watamoto T; Samaranayake LP; Jayatilake JA; Egusa H; Yatani H; Seneviratne CJ
    Int J Antimicrob Agents; 2009 Oct; 34(4):333-9. PubMed ID: 19376687
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans.
    Sun L; Liao K; Wang D
    PLoS One; 2015; 10(2):e0117695. PubMed ID: 25710475
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quinacrine inhibits Candida albicans growth and filamentation at neutral pH.
    Kulkarny VV; Chavez-Dozal A; Rane HS; Jahng M; Bernardo SM; Parra KJ; Lee SA
    Antimicrob Agents Chemother; 2014 Dec; 58(12):7501-9. PubMed ID: 25288082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fangchinoline inhibits growth and biofilm of Candida albicans by inducing ROS overproduction.
    Yang L; Wang X; Ma Z; Sui Y; Liu X
    J Cell Mol Med; 2024 May; 28(9):e18354. PubMed ID: 38686557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation.
    Larkin E; Hager C; Chandra J; Mukherjee PK; Retuerto M; Salem I; Long L; Isham N; Kovanda L; Borroto-Esoda K; Wring S; Angulo D; Ghannoum M
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28223375
    [No Abstract]   [Full Text] [Related]  

  • 50. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation.
    Manoharan RK; Lee JH; Lee J
    Microb Biotechnol; 2018 Nov; 11(6):1060-1069. PubMed ID: 29656577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antiepileptic Drugs Inhibit Growth, Dimorphism, and Biofilm Mode of Growth in Human Pathogen Candida albicans.
    Kathwate GH; Shinde RB; Karuppayil SM
    Assay Drug Dev Technol; 2015; 13(6):307-12. PubMed ID: 26241210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antifungal activity of ribavirin used alone or in combination with fluconazole against Candida albicans is mediated by reduced virulence.
    Zhang M; Yan H; Lu M; Wang D; Sun S
    Int J Antimicrob Agents; 2020 Jan; 55(1):105804. PubMed ID: 31605727
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relevance of antifungal penetration in biofilm-associated resistance of Candida albicans and non-albicans Candida species.
    Singh R; Kumari A; Kaur K; Sethi P; Chakrabarti A
    J Med Microbiol; 2018 Jul; 67(7):922-926. PubMed ID: 29767615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectrum of activity and mechanisms of azole-bisphosphonate synergy in pathogenic
    Kane A; Dinh H; Campbell L; Cain AK; Hibbs D; Carter D
    Microbiol Spectr; 2024 Jun; 12(6):e0012124. PubMed ID: 38695556
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sertraline as a promising antifungal agent: inhibition of growth and biofilm of Candida auris with special focus on the mechanism of action in vitro.
    Gowri M; Jayashree B; Jeyakanthan J; Girija EK
    J Appl Microbiol; 2020 Feb; 128(2):426-437. PubMed ID: 31621139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.
    Nieminen MT; Novak-Frazer L; Rautemaa V; Rajendran R; Sorsa T; Ramage G; Bowyer P; Rautemaa R
    PLoS One; 2014; 9(5):e97864. PubMed ID: 24867320
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans.
    Raut JS; Shinde RB; Chauhan NM; Karuppayil SM
    Biofouling; 2013; 29(1):87-96. PubMed ID: 23216018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Zerumbone inhibits
    Shin DS; Eom YB
    Can J Microbiol; 2019 Oct; 65(10):713-721. PubMed ID: 31158320
    [No Abstract]   [Full Text] [Related]  

  • 59. Molecular mechanism of fluconazole resistance and pathogenicity attributes of Lebanese Candida albicans hospital isolates.
    Fattouh N; Hdayed D; Geukgeuzian G; Tokajian S; Khalaf RA
    Fungal Genet Biol; 2021 Aug; 153():103575. PubMed ID: 34033880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tricyclic antidepressants inhibit Candida albicans growth and biofilm formation.
    Caldara M; Marmiroli N
    Int J Antimicrob Agents; 2018 Oct; 52(4):500-505. PubMed ID: 29990546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.