These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 39162887)

  • 1. Monitoring lipopolysaccharide-induced macrophage polarization by surface-enhanced Raman scattering.
    Yılmaz D; Culha M
    Mikrochim Acta; 2024 Aug; 191(9):548. PubMed ID: 39162887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time resolved and label free monitoring of extracellular metabolites by surface enhanced Raman spectroscopy.
    Shalabaeva V; Lovato L; La Rocca R; Messina GC; Dipalo M; Miele E; Perrone M; Gentile F; De Angelis F
    PLoS One; 2017; 12(4):e0175581. PubMed ID: 28419111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles.
    Verde A; Mangini M; Managò S; Tramontano C; Rea I; Boraschi D; Italiani P; De Luca AC
    Front Immunol; 2021; 12():758410. PubMed ID: 34691081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk.
    Yang Y; Fan S; Chen Q; Lu Y; Zhu Y; Chen X; Xia L; Huang Q; Zheng J; Liu X
    J Nanobiotechnology; 2022 Jan; 20(1):37. PubMed ID: 35057820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells.
    Kumar S; Kumar A; Kim GH; Rhim WK; Hartman KL; Nam JM
    Small; 2017 Nov; 13(43):. PubMed ID: 28902980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS nanoprobes for the monitoring of endogenous nitric oxide in living cells.
    Cui J; Hu K; Sun JJ; Qu LL; Li DW
    Biosens Bioelectron; 2016 Nov; 85():324-330. PubMed ID: 27183283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of gold nanoparticles using
    Liu Y; Kim S; Kim YJ; Perumalsamy H; Lee S; Hwang E; Yi TH
    Int J Nanomedicine; 2019; 14():2945-2959. PubMed ID: 31114201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal.
    Chakraborty A; Das A; Raha S; Barui A
    J Photochem Photobiol B; 2020 Jan; 203():111778. PubMed ID: 31931389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.
    Bancos S; Stevens DL; Tyner KM
    Int J Nanomedicine; 2015; 10():183-206. PubMed ID: 25565813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold Nanoparticles in Single-Cell Analysis for Surface Enhanced Raman Scattering.
    Altunbek M; Kuku G; Culha M
    Molecules; 2016 Nov; 21(12):. PubMed ID: 27897986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous Detection of Intracellular Nitric Oxide and Peroxynitrite by a Surface-Enhanced Raman Scattering Nanosensor with Dual Reactivity.
    Chen HY; Kouadio Fodjo E; Jiang L; Chang S; Li JB; Zhan DS; Gu HX; Li DW
    ACS Sens; 2019 Dec; 4(12):3234-3239. PubMed ID: 31736302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of lipophilic gold nanoparticles for studying lipids by surface enhanced Raman spectroscopy (SERS).
    Driver M; Li Y; Zheng J; Decker E; Julian McClements D; He L
    Analyst; 2014 Jul; 139(13):3352-5. PubMed ID: 24835140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment.
    Ni C; Zhou J; Kong N; Bian T; Zhang Y; Huang X; Xiao Y; Yang W; Yan F
    Biomaterials; 2019 Jun; 206():115-132. PubMed ID: 30933774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular synthesis of gold nanoparticles by
    Liu Y; Perumalsamy H; Kang CH; Kim SH; Hwang JS; Koh SC; Yi TH; Kim YJ
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):777-788. PubMed ID: 32308043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracing Size and Surface Chemistry-Dependent Endosomal Uptake of Gold Nanoparticles Using Surface-Enhanced Raman Scattering.
    Öztaş DY; Altunbek M; Uzunoglu D; Yılmaz H; Çetin D; Suludere Z; Çulha M
    Langmuir; 2019 Mar; 35(11):4020-4028. PubMed ID: 30773019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Raman scattering from nanoparticle-decorated nanocone substrates: a practical approach to harness in-plane excitation.
    Hu YS; Jeon J; Seok TJ; Lee S; Hafner JH; Drezek RA; Choo H
    ACS Nano; 2010 Oct; 4(10):5721-30. PubMed ID: 20836500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipopolysaccharide from biofilm-forming
    Wang S; Xiang D; Tian F; Ni M
    J Med Microbiol; 2021 Apr; 70(4):. PubMed ID: 33909550
    [No Abstract]   [Full Text] [Related]  

  • 19. Evolution of the protein corona affects macrophage polarization.
    Yang H; Lu S; Wang S; Liu L; Zhu B; Yu S; Yang S; Chang J
    Int J Biol Macromol; 2021 Nov; 191():192-200. PubMed ID: 34547310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective inhibitory effects of 50-nm gold nanoparticles on mouse macrophage and spleen cells.
    Kingston M; Pfau JC; Gilmer J; Brey R
    J Immunotoxicol; 2016; 13(2):198-208. PubMed ID: 25875326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.