These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39164893)
1. Computation-Guided Discovery of Diazole Monosubstituted Tetrazines as Optimal Bioorthogonal Tools. Li Y; Su Y; Wang H; Xie Y; Wang X; Chang L; Jing Y; Zhang J; Ma JA; Jin H; Lou X; Peng Q; Liu T J Am Chem Soc; 2024 Oct; 146(39):26884-26896. PubMed ID: 39164893 [TBL] [Abstract][Full Text] [Related]
2. trans-Cyclooctene--a stable, voracious dienophile for bioorthogonal labeling. Selvaraj R; Fox JM Curr Opin Chem Biol; 2013 Oct; 17(5):753-60. PubMed ID: 23978373 [TBL] [Abstract][Full Text] [Related]
4. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Wu H; Devaraj NK Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113 [TBL] [Abstract][Full Text] [Related]
5. Advances in the Synthesis of Bioorthogonal Reagents: s-Tetrazines, 1,2,4-Triazines, Cyclooctynes, Heterocycloheptynes, and trans-Cyclooctenes. Fang Y; Hillman AS; Fox JM Top Curr Chem (Cham); 2024 May; 382(2):15. PubMed ID: 38703255 [TBL] [Abstract][Full Text] [Related]
6. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. Lang K; Davis L; Wallace S; Mahesh M; Cox DJ; Blackman ML; Fox JM; Chin JW J Am Chem Soc; 2012 Jun; 134(25):10317-20. PubMed ID: 22694658 [TBL] [Abstract][Full Text] [Related]
7. A Bone-Seeking trans-Cyclooctene for Pretargeting and Bioorthogonal Chemistry: A Proof of Concept Study Using Yazdani A; Bilton H; Vito A; Genady AR; Rathmann SM; Ahmad Z; Janzen N; Czorny S; Zeglis BM; Francesconi LC; Valliant JF J Med Chem; 2016 Oct; 59(20):9381-9389. PubMed ID: 27676258 [TBL] [Abstract][Full Text] [Related]
8. Tetrazine-trans-cyclooctene ligation: Unveiling the chemistry and applications within the human body. Tomarchio EG; Turnaturi R; Saccullo E; Patamia V; Floresta G; Zagni C; Rescifina A Bioorg Chem; 2024 Sep; 150():107573. PubMed ID: 38905885 [TBL] [Abstract][Full Text] [Related]
9. Uncovering the Key Role of Distortion in Bioorthogonal Tetrazine Tools That Defy the Reactivity/Stability Trade-Off. Svatunek D; Wilkovitsch M; Hartmann L; Houk KN; Mikula H J Am Chem Soc; 2022 May; 144(18):8171-8177. PubMed ID: 35500228 [TBL] [Abstract][Full Text] [Related]
10. Design, Synthesis, Conjugation, and Reactivity of Novel Longo B; Zanato C; Piras M; Dall'Angelo S; Windhorst AD; Vugts DJ; Baldassarre M; Zanda M Bioconjug Chem; 2020 Sep; 31(9):2201-2210. PubMed ID: 32786505 [TBL] [Abstract][Full Text] [Related]
11. Highly reactive trans-cyclooctene tags with improved stability for Diels-Alder chemistry in living systems. Rossin R; van den Bosch SM; Ten Hoeve W; Carvelli M; Versteegen RM; Lub J; Robillard MS Bioconjug Chem; 2013 Jul; 24(7):1210-7. PubMed ID: 23725393 [TBL] [Abstract][Full Text] [Related]
12. Control and design of mutual orthogonality in bioorthogonal cycloadditions. Liang Y; Mackey JL; Lopez SA; Liu F; Houk KN J Am Chem Soc; 2012 Oct; 134(43):17904-7. PubMed ID: 23061442 [TBL] [Abstract][Full Text] [Related]
13. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. Blackman ML; Royzen M; Fox JM J Am Chem Soc; 2008 Oct; 130(41):13518-9. PubMed ID: 18798613 [TBL] [Abstract][Full Text] [Related]
14. A Cleavable C Wilkovitsch M; Haider M; Sohr B; Herrmann B; Klubnick J; Weissleder R; Carlson JCT; Mikula H J Am Chem Soc; 2020 Nov; 142(45):19132-19141. PubMed ID: 33119297 [TBL] [Abstract][Full Text] [Related]
15. Conformationally Strained trans-Cyclooctene (sTCO) Enables the Rapid Construction of (18)F-PET Probes via Tetrazine Ligation. Wang M; Svatunek D; Rohlfing K; Liu Y; Wang H; Giglio B; Yuan H; Wu Z; Li Z; Fox J Theranostics; 2016; 6(6):887-95. PubMed ID: 27162558 [TBL] [Abstract][Full Text] [Related]
16. Unraveling Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical Tools for Ultrafast Release and Universal Cleavage. Carlson JCT; Mikula H; Weissleder R J Am Chem Soc; 2018 Mar; 140(10):3603-3612. PubMed ID: 29384666 [TBL] [Abstract][Full Text] [Related]
17. Bioorthogonal Tetrazine Carbamate Cleavage by Highly Reactive van Onzen AHAM; Versteegen RM; Hoeben FJM; Filot IAW; Rossin R; Zhu T; Wu J; Hudson PJ; Janssen HM; Ten Hoeve W; Robillard MS J Am Chem Soc; 2020 Jun; 142(25):10955-10963. PubMed ID: 32453557 [TBL] [Abstract][Full Text] [Related]
18. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging. Murrey HE; Judkins JC; Am Ende CW; Ballard TE; Fang Y; Riccardi K; Di L; Guilmette ER; Schwartz JW; Fox JM; Johnson DS J Am Chem Soc; 2015 Sep; 137(35):11461-75. PubMed ID: 26270632 [TBL] [Abstract][Full Text] [Related]
19. Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted Stéen EJL; Jørgensen JT; Denk C; Battisti UM; Nørregaard K; Edem PE; Bratteby K; Shalgunov V; Wilkovitsch M; Svatunek D; Poulie CBM; Hvass L; Simón M; Wanek T; Rossin R; Robillard M; Kristensen JL; Mikula H; Kjaer A; Herth MM ACS Pharmacol Transl Sci; 2021 Apr; 4(2):824-833. PubMed ID: 33860205 [TBL] [Abstract][Full Text] [Related]
20. Ideal Bioorthogonal Reactions Using A Site-Specifically Encoded Tetrazine Amino Acid. Blizzard RJ; Backus DR; Brown W; Bazewicz CG; Li Y; Mehl RA J Am Chem Soc; 2015 Aug; 137(32):10044-7. PubMed ID: 26237426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]