These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations. El Gawhary O Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574 [TBL] [Abstract][Full Text] [Related]
7. Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics. Wang H; Zhang M; Gao J; Lan Y; Zuo Y; Zheng X Opt Express; 2021 Jan; 29(2):1109-1124. PubMed ID: 33726333 [TBL] [Abstract][Full Text] [Related]
8. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials. Robert Iskander D; Davis BA; Collins MJ; Franklin R Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237 [TBL] [Abstract][Full Text] [Related]
9. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
10. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye. Carvalho LA Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604 [TBL] [Abstract][Full Text] [Related]
11. Orthonormal polynomials in wavefront analysis: analytical solution. Mahajan VN; Dai GM J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271 [TBL] [Abstract][Full Text] [Related]
12. Recursive formula to compute Zernike radial polynomials. Honarvar Shakibaei B; Paramesran R Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089 [TBL] [Abstract][Full Text] [Related]
13. Zernike annular polynomials and optical aberrations of systems with annular pupils. Mahajan VN Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042 [TBL] [Abstract][Full Text] [Related]
14. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers. Jeong TM; Ko DK; Lee J Opt Lett; 2007 Feb; 32(3):232-4. PubMed ID: 17215929 [TBL] [Abstract][Full Text] [Related]
15. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]