These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39164968)

  • 1. Variational calculus approach to Zernike polynomials with application to FCS.
    Gligonov I; Enderlein J
    Biophys J; 2024 Aug; ():. PubMed ID: 39164968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics.
    Wang H; Zhang M; Gao J; Lan Y; Zuo Y; Zheng X
    Opt Express; 2021 Jan; 29(2):1109-1124. PubMed ID: 33726333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials.
    Robert Iskander D; Davis BA; Collins MJ; Franklin R
    Ophthalmic Physiol Opt; 2007 May; 27(3):245-55. PubMed ID: 17470237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of Zernike polynomials in characterizing optical aberrations and the corneal surface of the eye.
    Carvalho LA
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):1915-26. PubMed ID: 15914604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zernike annular polynomials and optical aberrations of systems with annular pupils.
    Mahajan VN
    Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method of reconstructing wavefront aberrations by use of Zernike polynomials in radial shearing interferometers.
    Jeong TM; Ko DK; Lee J
    Opt Lett; 2007 Feb; 32(3):232-4. PubMed ID: 17215929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling pseudo-Zernike expansion coefficients to different pupil sizes.
    Schwiegerling J
    Opt Lett; 2011 Aug; 36(16):3076-8. PubMed ID: 21847165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual impact of Zernike and Seidel forms of monochromatic aberrations.
    Cheng X; Bradley A; Ravikumar S; Thibos LN
    Optom Vis Sci; 2010 May; 87(5):300-12. PubMed ID: 20351600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-compensation of Zernike aberrations in Gaussian beam optics.
    Czuchnowski J; Prevedel R
    Opt Lett; 2021 Jul; 46(14):3480-3483. PubMed ID: 34264243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory study of aberration calculation in underwater turbulence using Shack-Hartmann wavefront sensor and Zernike polynomials.
    Aghajani A; Kashani FD; Yousefi M
    Opt Express; 2024 Apr; 32(9):15978-15992. PubMed ID: 38859236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.