These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 39165174)

  • 1. Deciphering the Evolution of Inertial Migration in Serpentine Channels.
    Liu Y; Zhang J; Peng X; Yan S
    Anal Chem; 2024 Sep; 96(35):14306-14314. PubMed ID: 39165174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A generalized formula for inertial lift on a sphere in microchannels.
    Liu C; Xue C; Sun J; Hu G
    Lab Chip; 2016 Mar; 16(5):884-92. PubMed ID: 26794086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial Migration of Neutrally Buoyant Spherical Particles in Square Channels at Moderate and High Reynolds Numbers.
    Gao Y; Magaud P; Baldas L; Wang Y
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33672972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elasto-inertial focusing and particle migration in high aspect ratio microchannels for high-throughput separation.
    Tanriverdi S; Cruz J; Habibi S; Amini K; Costa M; Lundell F; Mårtensson G; Brandt L; Tammisola O; Russom A
    Microsyst Nanoeng; 2024; 10():87. PubMed ID: 38919163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation and practice of particle inertial focusing in 3D-printed serpentine microfluidic chips via commercial 3D-printers.
    Yin P; Zhao L; Chen Z; Jiao Z; Shi H; Hu B; Yuan S; Tian J
    Soft Matter; 2020 Mar; 16(12):3096-3105. PubMed ID: 32149313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of non-Newtonian power law rheology on inertial migration of particles in channel flow.
    Hu X; Lin J; Chen D; Ku X
    Biomicrofluidics; 2020 Jan; 14(1):014105. PubMed ID: 31933715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning assisted fast prediction of inertial lift in microchannels.
    Su J; Chen X; Zhu Y; Hu G
    Lab Chip; 2021 Jun; 21(13):2544-2556. PubMed ID: 33998624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern Transition on Inertial Focusing of Neutrally Buoyant Particles Suspended in Rectangular Duct Flows.
    Yamashita H; Akinaga T; Sugihara-Seki M
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers.
    Liu C; Hu G; Jiang X; Sun J
    Lab Chip; 2015 Feb; 15(4):1168-77. PubMed ID: 25563524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Secondary Flow in Inertial Microfluidics.
    Zhao Q; Yuan D; Zhang J; Li W
    Micromachines (Basel); 2020 Apr; 11(5):. PubMed ID: 32354106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamentals of Differential Particle Inertial Focusing in Symmetric Sinusoidal Microchannels.
    Zhang J; Yuan D; Zhao Q; Teo AJT; Yan S; Ooi CH; Li W; Nguyen NT
    Anal Chem; 2019 Mar; 91(6):4077-4084. PubMed ID: 30669838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel.
    Zhang J; Yan S; Sluyter R; Li W; Alici G; Nguyen NT
    Sci Rep; 2014 Mar; 4():4527. PubMed ID: 24681628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel.
    Zhao T; Yao J; Liu K; Takei M
    Biomicrofluidics; 2016 Mar; 10(2):024120. PubMed ID: 27158288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial focusing in non-rectangular cross-section microchannels and manipulation of accessible focusing positions.
    Kim J; Lee J; Wu C; Nam S; Di Carlo D; Lee W
    Lab Chip; 2016 Mar; 16(6):992-1001. PubMed ID: 26853995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel.
    Mashhadian A; Shamloo A
    Anal Chim Acta; 2019 Nov; 1083():137-149. PubMed ID: 31493804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feedback control of inertial microfluidics using axial control forces.
    Prohm C; Stark H
    Lab Chip; 2014 Jun; 14(12):2115-23. PubMed ID: 24811136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.