These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 39165991)

  • 1. Adaptive machine learning for forecasting in wind energy: A dynamic, multi-algorithmic approach for short and long-term predictions.
    AlShafeey M; Csaki C
    Heliyon; 2024 Aug; 10(15):e34807. PubMed ID: 39165991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting.
    Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources.
    R Singh A; Kumar RS; Bajaj M; Khadse CB; Zaitsev I
    Sci Rep; 2024 Aug; 14(1):19207. PubMed ID: 39160194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance enhancement of short-term wind speed forecasting model using Realtime data.
    Ashraf M; Raza B; Arshad M; Khan BM; Zaidi SSH
    PLoS One; 2024; 19(5):e0302664. PubMed ID: 38820359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization.
    Teferra DM; Ngoo LMH; Nyakoe GN
    Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-Time Wind Speed Forecast Using Artificial Learning-Based Algorithms.
    Ibrahim M; Alsheikh A; Al-Hindawi Q; Al-Dahidi S; ElMoaqet H
    Comput Intell Neurosci; 2020; 2020():8439719. PubMed ID: 32377179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid attention-based deep neural networks for short-term wind power forecasting using meteorological data in desert regions.
    Belletreche M; Bailek N; Abotaleb M; Bouchouicha K; Zerouali B; Guermoui M; Kuriqi A; Alharbi AH; Khafaga DS; El-Shimy M; El-Kenawy EM
    Sci Rep; 2024 Sep; 14(1):21842. PubMed ID: 39294219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct and indirect short-term aggregated turbine- and farm-level wind power forecasts integrating several NWP sources.
    Yakoub G; Mathew S; Leal J
    Heliyon; 2023 Nov; 9(11):e21479. PubMed ID: 37954395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle.
    Deo RC; Downs N; Parisi AV; Adamowski JF; Quilty JM
    Environ Res; 2017 May; 155():141-166. PubMed ID: 28222363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A GA-stacking ensemble approach for forecasting energy consumption in a smart household: A comparative study of ensemble methods.
    Dostmohammadi M; Pedram MZ; Hoseinzadeh S; Garcia DA
    J Environ Manage; 2024 Jul; 364():121264. PubMed ID: 38870783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning versus hybrid regularized extreme learning machine for multi-month drought forecasting: A comparative study and trend analysis in tropical region.
    Hameed MM; Mohd Razali SF; Wan Mohtar WHM; Ahmad Alsaydalani MO; Yaseen ZM
    Heliyon; 2024 Jan; 10(1):e22942. PubMed ID: 38187234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of ANN-based wind power forecasting by modification of surface roughness parameterization over complex terrain.
    Kim J; Shin HJ; Lee K; Hong J
    J Environ Manage; 2024 Jun; 362():121246. PubMed ID: 38823298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Priori-guided and data-driven hybrid model for wind power forecasting.
    Huang Y; Liu GP; Hu W
    ISA Trans; 2023 Mar; 134():380-395. PubMed ID: 35989129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting.
    Yang S; Yuan A; Yu Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms.
    Sharma E; Deo RC; Prasad R; Parisi AV
    Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive models for short-term load forecasting in the UK's electrical grid.
    Sha'aban YA
    PLoS One; 2024; 19(4):e0297267. PubMed ID: 38573985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid prediction model for forecasting wind energy resources.
    Zhang Y; Pan G
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feature selection in wind speed forecasting systems based on meta-heuristic optimization.
    El-Kenawy EM; Mirjalili S; Khodadadi N; Abdelhamid AA; Eid MM; El-Said M; Ibrahim A
    PLoS One; 2023; 18(2):e0278491. PubMed ID: 36749744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid approach for short-term forecasting of wind speed.
    Tatinati S; Veluvolu KC
    ScientificWorldJournal; 2013; 2013():548370. PubMed ID: 24453872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new hybrid PM[Formula: see text] volatility forecasting model based on EMD and machine learning algorithms.
    Wang P; Bi X; Zhang G; Yu M
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82878-82894. PubMed ID: 37335511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.