These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39166265)
1. DNA methylation impacts soybean early development by modulating hormones and metabolic pathways. Coelho FS; Miranda SS; Moraes JL; Hemerly AS; Ballesteros HGF; Santa-Catarina C; Dos Santos RC; de Almeida FA; Silveira V; Macedo A; Floh EIS; de Oliveira Alves Sena E; de Oliveira JG; Viccini LF; de Matos EM; Grativol C Physiol Plant; 2024; 176(4):e14492. PubMed ID: 39166265 [TBL] [Abstract][Full Text] [Related]
2. Metabolic pathways regulated by strigolactones foliar spraying enhance osmoregulation and antioxidant defense in drought-prone soybean. Cao L; Zhang S; Feng L; Qiang B; Ma W; Cao S; Gong Z; Zhang Y BMC Plant Biol; 2024 Oct; 24(1):980. PubMed ID: 39420293 [TBL] [Abstract][Full Text] [Related]
3. Epigenomics in stress tolerance of plants under the climate change. Kumar M; Rani K Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468 [TBL] [Abstract][Full Text] [Related]
4. GmHXK2 promotes the salt tolerance of soybean seedlings by mediating AsA synthesis, and auxin synthesis and distribution. Guo Y; Liu C; Chen S; Tian Z BMC Plant Biol; 2024 Jun; 24(1):613. PubMed ID: 38937682 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide analysis of cytosine DNA methylation revealed salicylic acid promotes defense pathways over seedling development in pearl millet. Ngom B; Sarr I; Kimatu J; Mamati E; Kane NA Plant Signal Behav; 2017 Sep; 12(9):e1356967. PubMed ID: 28758879 [TBL] [Abstract][Full Text] [Related]
6. Non-CG DNA hypomethylation promotes photosynthesis and nitrogen fixation in soybean. Xun H; Wang Y; Yuan J; Lian L; Feng W; Liu S; Hong J; Liu B; Ma J; Wang X Proc Natl Acad Sci U S A; 2024 Sep; 121(36):e2402946121. PubMed ID: 39213181 [TBL] [Abstract][Full Text] [Related]
7. Similarity between soybean and Lin JY; Le BH; Chen M; Henry KF; Hur J; Hsieh TF; Chen PY; Pelletier JM; Pellegrini M; Fischer RL; Harada JJ; Goldberg RB Proc Natl Acad Sci U S A; 2017 Nov; 114(45):E9730-E9739. PubMed ID: 29078418 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq. Shamimuzzaman M; Vodkin L BMC Genomics; 2013 Jul; 14():477. PubMed ID: 23865409 [TBL] [Abstract][Full Text] [Related]
9. Enhancing saline stress tolerance in soybean seedlings through optimal NH Noor J; Ahmad I; Ullah A; Iqbal B; Anwar S; Jalal A; Okla MK; Alaraidh IA; Abdelgawad H; Fahad S BMC Plant Biol; 2024 Jun; 24(1):572. PubMed ID: 38890574 [TBL] [Abstract][Full Text] [Related]
10. Elucidating the role of exogenous melatonin in mitigating alkaline stress in soybeans across different growth stages: a transcriptomic and metabolomic approach. Duan Y; Wang X; Jiao Y; Liu Y; Li Y; Song Y; Wang L; Tong X; Jiang Y; Wang S; Wang S BMC Plant Biol; 2024 May; 24(1):380. PubMed ID: 38720246 [TBL] [Abstract][Full Text] [Related]
11. Methylation-sensitive expression of a DNA demethylase gene serves as an epigenetic rheostat. Williams BP; Pignatta D; Henikoff S; Gehring M PLoS Genet; 2015 Mar; 11(3):e1005142. PubMed ID: 25826366 [TBL] [Abstract][Full Text] [Related]
12. Genomic organization and expression profiles of nitrogen assimilation genes in Elsanosi HA; Zhu T; Zhou G; Song L PeerJ; 2024; 12():e17590. PubMed ID: 38938604 [TBL] [Abstract][Full Text] [Related]
13. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. Park YG; Mun BG; Kang SM; Hussain A; Shahzad R; Seo CW; Kim AY; Lee SU; Oh KY; Lee DY; Lee IJ; Yun BW PLoS One; 2017; 12(3):e0173203. PubMed ID: 28282395 [TBL] [Abstract][Full Text] [Related]
14. Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants. Wang S; Wang L; Hua W; Zhou M; Wang Q; Zhou Q; Huang X Environ Sci Pollut Res Int; 2015 Nov; 22(22):17653-62. PubMed ID: 26150296 [TBL] [Abstract][Full Text] [Related]
15. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Hao YJ; Wei W; Song QX; Chen HW; Zhang YQ; Wang F; Zou HF; Lei G; Tian AG; Zhang WK; Ma B; Zhang JS; Chen SY Plant J; 2011 Oct; 68(2):302-13. PubMed ID: 21707801 [TBL] [Abstract][Full Text] [Related]
16. Melatonin Ameliorates Thermotolerance in Soybean Seedling through Balancing Redox Homeostasis and Modulating Antioxidant Defense, Phytohormones and Polyamines Biosynthesis. Imran M; Aaqil Khan M; Shahzad R; Bilal S; Khan M; Yun BW; Khan AL; Lee IJ Molecules; 2021 Aug; 26(17):. PubMed ID: 34500550 [TBL] [Abstract][Full Text] [Related]
17. Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress. Chmielowska-Bąk J; Lefèvre I; Lutts S; Deckert J J Plant Physiol; 2013 Dec; 170(18):1585-94. PubMed ID: 23942356 [TBL] [Abstract][Full Text] [Related]
18. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress. Vaishnav A; Kumari S; Jain S; Varma A; Choudhary DK J Appl Microbiol; 2015 Aug; 119(2):539-51. PubMed ID: 26042866 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen sulphide alleviates iron deficiency by promoting iron availability and plant hormone levels in Glycine max seedlings. Chen J; Zhang NN; Pan Q; Lin XY; Shangguan Z; Zhang JH; Wei GH BMC Plant Biol; 2020 Aug; 20(1):383. PubMed ID: 32819279 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Nanjo Y; Maruyama K; Yasue H; Yamaguchi-Shinozaki K; Shinozaki K; Komatsu S Plant Mol Biol; 2011 Sep; 77(1-2):129-44. PubMed ID: 21656040 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]