These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 39166404)
1. Perspectives on the use of machine learning for ADME prediction at AstraZeneca. Gawehn E; Greene N; Miljković F; Obrezanova O; Subramanian V; Trapotsi MA; Winiwarter S Xenobiotica; 2024 Jul; 54(7):368-378. PubMed ID: 39166404 [TBL] [Abstract][Full Text] [Related]
2. Another string to your bow: machine learning prediction of the pharmacokinetic properties of small molecules. Bassani D; Parrott NJ; Manevski N; Zhang JD Expert Opin Drug Discov; 2024 Jun; 19(6):683-698. PubMed ID: 38727016 [TBL] [Abstract][Full Text] [Related]
3. Machine learning framework to predict pharmacokinetic profile of small molecule drugs based on chemical structure. Pillai N; Abos A; Teutonico D; Mavroudis PD Clin Transl Sci; 2024 May; 17(5):e13824. PubMed ID: 38752574 [TBL] [Abstract][Full Text] [Related]
5. A Combination of Machine Learning and PBPK Modeling Approach for Pharmacokinetics Prediction of Small Molecules in Humans. Li Y; Wang Z; Li Y; Du J; Gao X; Li Y; Lai L Pharm Res; 2024 Jul; 41(7):1369-1379. PubMed ID: 38918309 [TBL] [Abstract][Full Text] [Related]
6. Artificial intelligence in drug design. Zhong F; Xing J; Li X; Liu X; Fu Z; Xiong Z; Lu D; Wu X; Zhao J; Tan X; Li F; Luo X; Li Z; Chen K; Zheng M; Jiang H Sci China Life Sci; 2018 Oct; 61(10):1191-1204. PubMed ID: 30054833 [TBL] [Abstract][Full Text] [Related]
7. The use of machine learning and nonlinear statistical tools for ADME prediction. Sakiyama Y Expert Opin Drug Metab Toxicol; 2009 Feb; 5(2):149-69. PubMed ID: 19239395 [TBL] [Abstract][Full Text] [Related]
8. Prediction of In Vivo Pharmacokinetic Parameters and Time-Exposure Curves in Rats Using Machine Learning from the Chemical Structure. Obrezanova O; Martinsson A; Whitehead T; Mahmoud S; Bender A; Miljković F; Grabowski P; Irwin B; Oprisiu I; Conduit G; Segall M; Smith GF; Williamson B; Winiwarter S; Greene N Mol Pharm; 2022 May; 19(5):1488-1504. PubMed ID: 35412314 [TBL] [Abstract][Full Text] [Related]
9. Recent progresses in the exploration of machine learning methods as in-silico ADME prediction tools. Tao L; Zhang P; Qin C; Chen SY; Zhang C; Chen Z; Zhu F; Yang SY; Wei YQ; Chen YZ Adv Drug Deliv Rev; 2015 Jun; 86():83-100. PubMed ID: 26037068 [TBL] [Abstract][Full Text] [Related]
10. truPK -- human pharmacokinetic models for quantitative ADME prediction. Subramanian K Expert Opin Drug Metab Toxicol; 2005 Oct; 1(3):555-64. PubMed ID: 16863461 [TBL] [Abstract][Full Text] [Related]
11. Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine. Paliwal A; Jain S; Kumar S; Wal P; Khandai M; Khandige PS; Sadananda V; Anwer MK; Gulati M; Behl T; Srivastava S Expert Opin Drug Metab Toxicol; 2024 Apr; 20(4):181-195. PubMed ID: 38480460 [TBL] [Abstract][Full Text] [Related]
12. Quantum Machine Learning Predicting ADME-Tox Properties in Drug Discovery. Bhatia AS; Saggi MK; Kais S J Chem Inf Model; 2023 Nov; 63(21):6476-6486. PubMed ID: 37603536 [TBL] [Abstract][Full Text] [Related]
13. Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery. Chen EP; Bondi RW; Michalski PJ J Med Chem; 2021 Mar; 64(6):3185-3196. PubMed ID: 33719432 [TBL] [Abstract][Full Text] [Related]
14. Predicting drug metabolism and pharmacokinetics features of in-house compounds by a hybrid machine-learning model. Sasahara K; Shibata M; Sasabe H; Suzuki T; Takeuchi K; Umehara K; Kashiyama E Drug Metab Pharmacokinet; 2021 Aug; 39():100395. PubMed ID: 33991751 [TBL] [Abstract][Full Text] [Related]
15. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors. Shiammala PN; Duraimutharasan NKB; Vaseeharan B; Alothaim AS; Al-Malki ES; Snekaa B; Safi SZ; Singh SK; Velmurugan D; Selvaraj C Methods; 2023 Nov; 219():82-94. PubMed ID: 37778659 [TBL] [Abstract][Full Text] [Related]
16. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 1: goals, properties of the PhRMA dataset, and comparison with literature datasets. Poulin P; Jones HM; Jones RD; Yates JW; Gibson CR; Chien JY; Ring BJ; Adkison KK; He H; Vuppugalla R; Marathe P; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Ku MS J Pharm Sci; 2011 Oct; 100(10):4050-73. PubMed ID: 21523782 [TBL] [Abstract][Full Text] [Related]
17. Systematic Evaluation of Local and Global Machine Learning Models for the Prediction of ADME Properties. Di Lascio E; Gerebtzoff G; Rodríguez-Pérez R Mol Pharm; 2023 Mar; 20(3):1758-1767. PubMed ID: 36745394 [TBL] [Abstract][Full Text] [Related]
18. Opportunities and Considerations in the Application of Artificial Intelligence to Pharmacokinetic Prediction. Wright MR Methods Mol Biol; 2022; 2390():461-482. PubMed ID: 34731483 [TBL] [Abstract][Full Text] [Related]
19. A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Danishuddin ; Kumar V; Faheem M; Woo Lee K Drug Discov Today; 2022 Feb; 27(2):529-537. PubMed ID: 34592448 [TBL] [Abstract][Full Text] [Related]
20. PhRMA CPCDC initiative on predictive models of human pharmacokinetics, part 4: prediction of plasma concentration-time profiles in human from in vivo preclinical data by using the Wajima approach. Vuppugalla R; Marathe P; He H; Jones RD; Yates JW; Jones HM; Gibson CR; Chien JY; Ring BJ; Adkison KK; Ku MS; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Poulin P J Pharm Sci; 2011 Oct; 100(10):4111-26. PubMed ID: 21480234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]