These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 39166476)

  • 1. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease.
    Binder SC; Schneberger N; Schmitz M; Engeser M; Geyer M; Rouillon C; Hagelueken G
    Nucleic Acids Res; 2024 Sep; 52(17):10520-10532. PubMed ID: 39166476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filament formation activates protease and ring nuclease activities of CRISPR Lon-SAVED.
    Smalakyte D; Ruksenaite A; Sasnauskas G; Tamulaitiene G; Tamulaitis G
    Mol Cell; 2024 Nov; 84(21):4239-4255.e8. PubMed ID: 39362215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage.
    Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF
    Elife; 2020 Jun; 9():. PubMed ID: 32597755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.
    Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G
    Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antiviral signalling by a cyclic nucleotide activated CRISPR protease.
    Rouillon C; Schneberger N; Chi H; Blumenstock K; Da Vela S; Ackermann K; Moecking J; Peter MF; Boenigk W; Seifert R; Bode BE; Schmid-Burgk JL; Svergun D; Geyer M; White MF; Hagelueken G
    Nature; 2023 Feb; 614(7946):168-174. PubMed ID: 36423657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type III CRISPR-Cas: beyond the Cas10 effector complex.
    Stella G; Marraffini L
    Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic analysis of type III CRISPR systems reveals key properties and new effector families.
    Hoikkala V; Graham S; White MF
    Nucleic Acids Res; 2024 Jul; 52(12):7129-7141. PubMed ID: 38808661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence.
    Samolygo A; Athukoralage JS; Graham S; White MF
    Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of cyclic oligoadenylate synthesis by the
    Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA
    RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
    Steens JA; Salazar CRP; Staals RHJ
    Biochem Soc Trans; 2022 Oct; 50(5):1353-1364. PubMed ID: 36282000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system.
    Zhang D; Du L; Gao H; Yuan C; Lin Z
    Nucleic Acids Res; 2024 Aug; 52(14):8419-8430. PubMed ID: 38967023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity.
    Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF
    Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of stepwise cyclic tetra-adenylate cleavage by the type III CRISPR ring nuclease Crn1/Sso2081.
    Du L; Zhang D; Luo Z; Lin Z
    Nucleic Acids Res; 2023 Mar; 51(5):2485-2495. PubMed ID: 36807980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA
    Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM
    J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type III-B CRISPR-Cas cascade of proteolytic cleavages.
    Steens JA; Bravo JPK; Salazar CRP; Yildiz C; Amieiro AM; Köstlbacher S; Prinsen SHP; Andres AS; Patinios C; Bardis A; Barendregt A; Scheltema RA; Ettema TJG; van der Oost J; Taylor DW; Staals RHJ
    Science; 2024 Feb; 383(6682):512-519. PubMed ID: 38301007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA
    Jia N; Jones R; Yang G; Ouerfelli O; Patel DJ
    Mol Cell; 2019 Sep; 75(5):944-956.e6. PubMed ID: 31326273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the RNA and DNA nuclease activities required for Pyrococcus furiosus Type III-B CRISPR-Cas immunity.
    Foster K; Grüschow S; Bailey S; White MF; Terns MP
    Nucleic Acids Res; 2020 May; 48(8):4418-4434. PubMed ID: 32198888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.
    Koonin EV; Makarova KS
    ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis for cA6 synthesis by a type III-A CRISPR-Cas enzyme and its conversion to cA4 production.
    Goswami HN; Ahmadizadeh F; Wang B; Addo-Yobo D; Zhao Y; Whittington AC; He H; Terns MP; Li H
    Nucleic Acids Res; 2024 Sep; 52(17):10619-10629. PubMed ID: 38989619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.