These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 39166970)

  • 1. Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma.
    Gagnon L; Gupta D; Mastorakos G; White N; Goodwill V; McDonald CR; Beaumont T; Conlin C; Seibert TM; Nguyen U; Hattangadi-Gluth J; Kesari S; Schulte JD; Piccioni D; Schmainda KM; Farid N; Dale AM; Rudie JD
    Radiol Artif Intell; 2024 Sep; 6(5):e230489. PubMed ID: 39166970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical parameters outweigh diffusion- and perfusion-derived MRI parameters in predicting survival in newly diagnosed glioblastoma.
    Burth S; Kickingereder P; Eidel O; Tichy D; Bonekamp D; Weberling L; Wick A; Löw S; Hertenstein A; Nowosielski M; Schlemmer HP; Wick W; Bendszus M; Radbruch A
    Neuro Oncol; 2016 Dec; 18(12):1673-1679. PubMed ID: 27298312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative volumetric assessment of baseline enhancing tumor volume as an imaging biomarker predicts overall survival in patients with glioblastoma.
    Auer TA; Della Seta M; Collettini F; Chapiro J; Zschaeck S; Ghadjar P; Badakhshi H; Florange J; Hamm B; Budach V; Kaul D
    Acta Radiol; 2021 Sep; 62(9):1200-1207. PubMed ID: 32938221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiparametric MR Imaging of Diffusion and Perfusion in Contrast-enhancing and Nonenhancing Components in Patients with Glioblastoma.
    Boonzaier NR; Larkin TJ; Matys T; van der Hoorn A; Yan JL; Price SJ
    Radiology; 2017 Jul; 284(1):180-190. PubMed ID: 28240563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of Early Response to Anti-Angiogenic Therapy in Recurrent Glioblastoma: Amide Proton Transfer-weighted and Perfusion-weighted MRI compared with Diffusion-weighted MRI.
    Park JE; Kim HS; Park SY; Jung SC; Kim JH; Heo HY
    Radiology; 2020 May; 295(2):397-406. PubMed ID: 32154775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training and Comparison of nnU-Net and DeepMedic Methods for Autosegmentation of Pediatric Brain Tumors.
    Vossough A; Khalili N; Familiar AM; Gandhi D; Viswanathan K; Tu W; Haldar D; Bagheri S; Anderson H; Haldar S; Storm PB; Resnick A; Ware JB; Nabavizadeh A; Fathi Kazerooni A
    AJNR Am J Neuroradiol; 2024 Aug; 45(8):1081-1089. PubMed ID: 38724204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion Magnetic Resonance Imaging Phenotypes Predict Overall Survival Benefit From Bevacizumab or Surgery in Recurrent Glioblastoma With Large Tumor Burden.
    Patel KS; Everson RG; Yao J; Raymond C; Goldman J; Schlossman J; Tsung J; Tan C; Pope WB; Ji MS; Nguyen NT; Lai A; Nghiemphu PL; Liau LM; Cloughesy TF; Ellingson BM
    Neurosurgery; 2020 Oct; 87(5):931-938. PubMed ID: 32365185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients.
    Kim JY; Park JE; Jo Y; Shim WH; Nam SJ; Kim JH; Yoo RE; Choi SH; Kim HS
    Neuro Oncol; 2019 Feb; 21(3):404-414. PubMed ID: 30107606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab.
    Chang K; Zhang B; Guo X; Zong M; Rahman R; Sanchez D; Winder N; Reardon DA; Zhao B; Wen PY; Huang RY
    Neuro Oncol; 2016 Dec; 18(12):1680-1687. PubMed ID: 27257279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over Established Clinical and Radiologic Risk Models.
    Kickingereder P; Burth S; Wick A; Götz M; Eidel O; Schlemmer HP; Maier-Hein KH; Wick W; Bendszus M; Radbruch A; Bonekamp D
    Radiology; 2016 Sep; 280(3):880-9. PubMed ID: 27326665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nnU-Net-based Segmentation of Tumor Subcompartments in Pediatric Medulloblastoma Using Multiparametric MRI: A Multi-institutional Study.
    Bareja R; Ismail M; Martin D; Nayate A; Yadav I; Labbad M; Dullur P; Garg S; Tamrazi B; Salloum R; Margol A; Judkins A; Iyer S; de Blank P; Tiwari P
    Radiol Artif Intell; 2024 Sep; 6(5):e230115. PubMed ID: 39166971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incremental Prognostic Value of ADC Histogram Analysis over MGMT Promoter Methylation Status in Patients with Glioblastoma.
    Choi YS; Ahn SS; Kim DW; Chang JH; Kang SG; Kim EH; Kim SH; Rim TH; Lee SK
    Radiology; 2016 Oct; 281(1):175-84. PubMed ID: 27120357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-Operative Perfusion Skewness and Kurtosis Are Potential Predictors of Progression-Free Survival after Partial Resection of Newly Diagnosed Glioblastoma.
    Paik W; Kim HS; Choi CG; Kim SJ
    Korean J Radiol; 2016; 17(1):117-26. PubMed ID: 26798224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI.
    Zhang XY; Wang L; Zhu HT; Li ZW; Ye M; Li XT; Shi YJ; Zhu HC; Sun YS
    Radiology; 2020 Jul; 296(1):56-64. PubMed ID: 32315264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histogram analysis of apparent diffusion coefficient within enhancing and nonenhancing tumor volumes in recurrent glioblastoma patients treated with bevacizumab.
    Rahman R; Hamdan A; Zweifler R; Jiang H; Norden AD; Reardon DA; Mukundan S; Wen PY; Huang RY
    J Neurooncol; 2014 Aug; 119(1):149-58. PubMed ID: 24805151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination Between Glioblastoma and Solitary Brain Metastasis Using Conventional MRI and Diffusion-Weighted Imaging Based on a Deep Learning Algorithm.
    Yan Q; Li F; Cui Y; Wang Y; Wang X; Jia W; Liu X; Li Y; Chang H; Shi F; Xia Y; Zhou Q; Zeng Q
    J Digit Imaging; 2023 Aug; 36(4):1480-1488. PubMed ID: 37156977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Contrast-Enhanced MR Imaging of Nonenhancing T2 High-Signal-Intensity Lesions in Baseline and Posttreatment Glioblastoma: Temporal Change and Prognostic Value.
    Hwang I; Choi SH; Park CK; Kim TM; Park SH; Won JK; Kim IH; Lee ST; Yoo RE; Kang KM; Yun TJ; Kim JH; Sohn CH
    AJNR Am J Neuroradiol; 2020 Jan; 41(1):49-56. PubMed ID: 31806595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal Heterogeneity in Multiparametric Physiologic MRI Is Associated with Patient Outcomes in IDH-Wildtype Glioblastoma.
    Park JE; Kim HS; Kim N; Park SY; Kim YH; Kim JH
    Clin Cancer Res; 2021 Jan; 27(1):237-245. PubMed ID: 33028594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-volume low apparent diffusion coefficient lesions predict poor survival in bevacizumab-treated glioblastoma patients.
    Zhang M; Gulotta B; Thomas A; Kaley T; Karimi S; Gavrilovic I; Woo KM; Zhang Z; Arevalo-Perez J; Holodny AI; Rosenblum M; Young RJ
    Neuro Oncol; 2016 May; 18(5):735-43. PubMed ID: 26538618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.