These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 39167797)
1. TME-NET: an interpretable deep neural network for predicting pan-cancer immune checkpoint inhibitor responses. Ding X; Zhang L; Fan M; Li L Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39167797 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of vascular adhesion protein-1 enhances the anti-tumor effects of immune checkpoint inhibitors. Kinoshita T; Sayem MA; Yaguchi T; Kharma B; Morii K; Kato D; Ohta S; Mashima Y; Asamura H; Kawakami Y Cancer Sci; 2021 Apr; 112(4):1390-1401. PubMed ID: 33453147 [TBL] [Abstract][Full Text] [Related]
3. Therapeutic Implications of Tumor Microenvironment in Lung Cancer: Focus on Immune Checkpoint Blockade. Genova C; Dellepiane C; Carrega P; Sommariva S; Ferlazzo G; Pronzato P; Gangemi R; Filaci G; Coco S; Croce M Front Immunol; 2021; 12():799455. PubMed ID: 35069581 [TBL] [Abstract][Full Text] [Related]
4. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH Front Immunol; 2020; 11():784. PubMed ID: 32457745 [TBL] [Abstract][Full Text] [Related]
5. ADGRE5-centered Tsurv model in T cells recognizes responders to neoadjuvant cancer immunotherapy. Li J; Meng Z; Cao Z; Lu W; Yang Y; Li Z; Lu S Front Immunol; 2024; 15():1304183. PubMed ID: 38343549 [TBL] [Abstract][Full Text] [Related]
6. Immune Infiltrating Cells-Derived Risk Signature Based on Large-scale Analysis Defines Immune Landscape and Predicts Immunotherapy Responses in Glioma Tumor Microenvironment. Zhang N; Zhang H; Wang Z; Dai Z; Zhang X; Cheng Q; Liu Z Front Immunol; 2021; 12():691811. PubMed ID: 34489938 [TBL] [Abstract][Full Text] [Related]
7. Improving Breast Cancer Responses to Immunotherapy-a Search for the Achilles Heel of the Tumor Microenvironment. Jenkins S; Wesolowski R; Gatti-Mays ME Curr Oncol Rep; 2021 Mar; 23(5):55. PubMed ID: 33755828 [TBL] [Abstract][Full Text] [Related]
8. An antigen processing and presentation signature for prognostic evaluation and immunotherapy selection in advanced gastric cancer. Wang KW; Wang MD; Li ZX; Hu BS; Wu JJ; Yuan ZD; Wu XL; Yuan QF; Yuan FL Front Immunol; 2022; 13():992060. PubMed ID: 36311733 [TBL] [Abstract][Full Text] [Related]
10. Recent advances in understanding the immune microenvironment in ovarian cancer. Chen J; Yang L; Ma Y; Zhang Y Front Immunol; 2024; 15():1412328. PubMed ID: 38903506 [TBL] [Abstract][Full Text] [Related]
11. Analysis of Tumor Microenvironment Characteristics in Bladder Cancer: Implications for Immune Checkpoint Inhibitor Therapy. Chen X; Chen H; He D; Cheng Y; Zhu Y; Xiao M; Lan H; Wang Z; Cao K Front Immunol; 2021; 12():672158. PubMed ID: 33936117 [TBL] [Abstract][Full Text] [Related]
12. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Hack SP; Zhu AX; Wang Y Front Immunol; 2020; 11():598877. PubMed ID: 33250900 [TBL] [Abstract][Full Text] [Related]
13. Gastric cancer immunosuppressive microenvironment heterogeneity: implications for therapy development. Yasuda T; Wang YA Trends Cancer; 2024 Jul; 10(7):627-642. PubMed ID: 38600020 [TBL] [Abstract][Full Text] [Related]
14. Pan-cancer analysis of CDKN2A alterations identifies a subset of gastric cancer with a cold tumor immune microenvironment. Deng C; Li ZX; Xie CJ; Zhang QL; Hu BS; Wang MD; Mei J; Yang C; Zhong Z; Wang KW Hum Genomics; 2024 May; 18(1):55. PubMed ID: 38822443 [TBL] [Abstract][Full Text] [Related]
15. USP7 inhibitors suppress tumour neoangiogenesis and promote synergy with immune checkpoint inhibitors by downregulating fibroblast VEGF. Jurisic A; Sung PJ; Wappett M; Daubriac J; Lobb IT; Kung WW; Crawford N; Page N; Cassidy E; Feutren-Burton S; Rountree JSS; Helm MD; O'Dowd CR; Kennedy RD; Gavory G; Cranston AN; Longley DB; Jacq X; Harrison T Clin Transl Med; 2024 Apr; 14(4):e1648. PubMed ID: 38602256 [TBL] [Abstract][Full Text] [Related]
16. Development and interpretation of a pathomics-driven ensemble model for predicting the response to immunotherapy in gastric cancer. Han Z; Zhang Z; Yang X; Li Z; Sang S; Islam MT; Guo AA; Li Z; Wang X; Wang J; Zhang T; Sun Z; Yu L; Wang W; Xiong W; Li G; Jiang Y J Immunother Cancer; 2024 May; 12(5):. PubMed ID: 38749538 [TBL] [Abstract][Full Text] [Related]
17. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Oladejo M; Paulishak W; Wood L Semin Cancer Biol; 2023 Jan; 88():81-95. PubMed ID: 36526110 [TBL] [Abstract][Full Text] [Related]
18. Immune checkpoint inhibitor resistance in hepatocellular carcinoma. Wang Z; Wang Y; Gao P; Ding J Cancer Lett; 2023 Feb; 555():216038. PubMed ID: 36529238 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive analysis of single cell and bulk RNA sequencing reveals the heterogeneity of melanoma tumor microenvironment and predicts the response of immunotherapy. Zhang Y; Zhang C; He J; Lai G; Li W; Zeng H; Zhong X; Xie B Inflamm Res; 2024 Aug; 73(8):1393-1409. PubMed ID: 38896289 [TBL] [Abstract][Full Text] [Related]
20. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Carnevalli LS; Ghadially H; Barry ST Front Immunol; 2021; 12():633685. PubMed ID: 33953710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]