These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39167885)
1. Fluorescent and colorimetric dual-readout platform for tuberculosis point-of-care detection based on dual signal amplification strategy and quantum dot nanoprobe. Hu O; Gong Y; Chang Y; Tan Y; Chen Z; Bi W; Jiang Z Biosens Bioelectron; 2024 Nov; 264():116641. PubMed ID: 39167885 [TBL] [Abstract][Full Text] [Related]
2. Selective recognition of CdTe QDs and strand displacement signal amplification-assisted label-free and homogeneous fluorescence assay of nucleic acid and protein. Hu P; Wang X; Wei L; Dai R; Yuan X; Huang K; Chen P J Mater Chem B; 2019 Aug; 7(31):4778-4783. PubMed ID: 31389950 [TBL] [Abstract][Full Text] [Related]
3. Hydrothermal synthetic mercaptopropionic acid stabled CdTe quantum dots as fluorescent probes for detection of Ag⁺. Gan TT; Zhang YJ; Zhao NJ; Xiao X; Yin GF; Yu SH; Wang HB; Duan JB; Shi CY; Liu WQ Spectrochim Acta A Mol Biomol Spectrosc; 2012 Dec; 99():62-8. PubMed ID: 23041923 [TBL] [Abstract][Full Text] [Related]
4. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. Qiu Z; Shu J; He Y; Lin Z; Zhang K; Lv S; Tang D Biosens Bioelectron; 2017 Jan; 87():18-24. PubMed ID: 27504793 [TBL] [Abstract][Full Text] [Related]
5. Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Zhao Y; Tan L; Gao X; Jie G; Huang T Biosens Bioelectron; 2018 Jul; 110():239-245. PubMed ID: 29627645 [TBL] [Abstract][Full Text] [Related]
6. Visual/CVG-AFS/ICP-MS multi-mode and label-free detection of target nucleic acids based on a selective cation exchange reaction and enzyme-free strand displacement amplification. Dai R; Hu P; Wang X; Wang S; Song X; Huang K; Chen P Analyst; 2019 Jul; 144(14):4407-4412. PubMed ID: 31210203 [TBL] [Abstract][Full Text] [Related]
7. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine. Sheng Z; Chen L Anal Bioanal Chem; 2017 Oct; 409(26):6081-6090. PubMed ID: 28799001 [TBL] [Abstract][Full Text] [Related]
8. An efficient ratiometric fluorescence sensor based on metal-organic frameworks and quantum dots for highly selective detection of 6-mercaptopurine. Jin M; Mou ZL; Zhang RL; Liang SS; Zhang ZQ Biosens Bioelectron; 2017 May; 91():162-168. PubMed ID: 28006684 [TBL] [Abstract][Full Text] [Related]
9. Detection of DNA utilizing a fluorescent reversible change of a biosensor based on the electron transfer from quantum dots to polymyxin B sulfate. Wang L; Liu S; Liang W; Li D; Yang J; He Y J Colloid Interface Sci; 2015 Jun; 448():257-64. PubMed ID: 25744859 [TBL] [Abstract][Full Text] [Related]
10. Multimode MicroRNA Sensing via Multiple Enzyme-Free Signal Amplification and Cation-Exchange Reaction. Chen P; Jiang X; Huang K; Hu P; Li X; Wei L; Liu W; Wei L; Tao C; Ying B; Wei X; Geng J ACS Appl Mater Interfaces; 2019 Oct; 11(40):36476-36484. PubMed ID: 31532182 [TBL] [Abstract][Full Text] [Related]
11. CdTe QDs based fluorescent sensor for the determination of gallic acid in tea. Tan X; Li Q; Yang J Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 224():117356. PubMed ID: 31351422 [TBL] [Abstract][Full Text] [Related]
12. Tuning quantum dots emission on DNA tetrahedron/silica nanosphere/graphene oxide nanointerface for ratiometric fluorescence assay of Pb Li M; Luo H; Wang Z; Mo Q; Zhong S; Mao YA; Li S; Li X Anal Chim Acta; 2024 Jun; 1310():342716. PubMed ID: 38811135 [TBL] [Abstract][Full Text] [Related]
13. A Multicomponent Nucleic Acid Enzyme-Cleavable Quantum Dot Nanobeacon for Highly Sensitive Diagnosis of Tuberculosis with the Naked Eye. Hu O; Li Z; Wu J; Tan Y; Chen Z; Tong Y ACS Sens; 2023 Jan; 8(1):254-262. PubMed ID: 36579361 [TBL] [Abstract][Full Text] [Related]
14. Fluorometric determination of copper(II) by using 3-aminophenylboronic acid-functionalized CdTe quantum dot probes. Xiong H; Wang B; Wen W; Zhang X; Wang S Mikrochim Acta; 2019 May; 186(6):392. PubMed ID: 31152237 [TBL] [Abstract][Full Text] [Related]
15. MPA-CdTe quantum dots as "on-off-on" sensitive fluorescence probe to detect ascorbic acid via redox reaction. Ding M; Wang K; Fang M; Zhu W; Du L; Li C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118249. PubMed ID: 32179461 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H Gong T; Liu J; Wu Y; Xiao Y; Wang X; Yuan S Biosens Bioelectron; 2017 Jun; 92():16-20. PubMed ID: 28167414 [TBL] [Abstract][Full Text] [Related]
17. Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products. Bunkoed O; Kanatharana P Luminescence; 2015 Nov; 30(7):1083-9. PubMed ID: 25683730 [TBL] [Abstract][Full Text] [Related]
18. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots. Nurerk P; Kanatharana P; Bunkoed O Luminescence; 2016 Mar; 31(2):515-522. PubMed ID: 26250550 [TBL] [Abstract][Full Text] [Related]
19. Quantum dots based potential-resolution dual-targets electrochemiluminescent immunosensor for subtype of tumor marker and its serological evaluation. Liu X; Jiang H; Fang Y; Zhao W; Wang N; Zang G Anal Chem; 2015 Sep; 87(18):9163-9. PubMed ID: 26291342 [TBL] [Abstract][Full Text] [Related]
20. Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III). Vaishanav SK; Korram J; Pradhan P; Chandraker K; Nagwanshi R; Ghosh KK; Satnami ML J Fluoresc; 2017 May; 27(3):781-789. PubMed ID: 28032282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]