These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 39168200)
1. Lignocellulose sustainable composites from agro-waste Asparagus bean stem fiber for polymer casting applications: Effect of fiber treatment. Tengsuthiwat J; Raghunathan V; Ayyappan V; Techawinyutham L; Srisuk R; Yorseng K; Mavinkere Rangappa S; Siengchin S Int J Biol Macromol; 2024 Oct; 278(Pt 3):134884. PubMed ID: 39168200 [TBL] [Abstract][Full Text] [Related]
2. Characterization of natural cellulosic fiber extracted from Grewia ferruginea plant stem. Birlie B; Mamay T Int J Biol Macromol; 2024 Jun; 271(Pt 2):132858. PubMed ID: 38845254 [TBL] [Abstract][Full Text] [Related]
3. Extraction and characterization of a new natural cellulosic fiber from the Habara Plant Stem (HF) as potential reinforcement for polymer composites. Vijayakkannan K; Rajendran I Int J Biol Macromol; 2024 Jun; 269(Pt 1):131818. PubMed ID: 38670191 [TBL] [Abstract][Full Text] [Related]
4. A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites. Singh JK; Rout AK; Kumari K Carbohydr Polym; 2021 Jun; 262():117929. PubMed ID: 33838807 [TBL] [Abstract][Full Text] [Related]
5. Characterization of novel natural cellulose fiber from Tengsuthiwat J; A V; R V; G YGT; Rangappa SM; Siengchin S Heliyon; 2024 May; 10(9):e30442. PubMed ID: 38726178 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Waste Ovalı S Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38675036 [No Abstract] [Full Text] [Related]
7. Revalorization of cellulosic fiber extracted from the waste stem of Brassica oleracea var. botrytis L. (cauliflower) by characterizing for potential composite applications. Eryilmaz O Int J Biol Macromol; 2024 May; 266(Pt 1):131086. PubMed ID: 38521302 [TBL] [Abstract][Full Text] [Related]
8. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. Vallittu PK J Prosthet Dent; 1999 Mar; 81(3):318-26. PubMed ID: 10050121 [TBL] [Abstract][Full Text] [Related]
9. Extraction of lignocellulosic fiber and cellulose microfibrils from agro waste-palmyra fruit peduncle: Water retting, chlorine-free chemical treatments, physio-chemical, morphological, and thermal characterization. Balasubramani V; Nagarajan KJ; Karthic M; Pandiyarajan R Int J Biol Macromol; 2024 Feb; 259(Pt 2):129273. PubMed ID: 38211922 [TBL] [Abstract][Full Text] [Related]
10. Characterization of new natural cellulosic fiber from Kar A; Saikia D Heliyon; 2023 Jun; 9(6):e16491. PubMed ID: 37274658 [TBL] [Abstract][Full Text] [Related]
11. Extraction and characterization of a novel cellulosic fiber derived from the bark of Rosa hybrida plant. Shibly MAH; Islam MI; Rahat MNH; Billah MM; Rahman MM; Bashar MS; Abdul B; Alorfi HS Int J Biol Macromol; 2024 Feb; 257(Pt 1):128446. PubMed ID: 38029899 [TBL] [Abstract][Full Text] [Related]
12. Investigating the Mechanical, Thermal, and Crystalline Properties of Raw and Potassium Hydroxide Treated Butea Parviflora Fibers for Green Polymer Composites. Mohan A; Priya RK; Arunachalam KP; Avudaiappan S; Maureira-Carsalade N; Roco-Videla A Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688148 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a new natural cellulosic fiber extracted from Derris scandens stem. C IP; R S Int J Biol Macromol; 2020 Dec; 165(Pt B):2303-2313. PubMed ID: 33091474 [TBL] [Abstract][Full Text] [Related]
14. Effects of magnesium carbonate concentration and lignin presence on properties of natural cellulosic Cissus quadrangularis fiber composites. Siva R; Valarmathi TN; Palanikumar K Int J Biol Macromol; 2020 Dec; 164():3611-3620. PubMed ID: 32877714 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Raju JSN; Depoures MV; Kumaran P Int J Biol Macromol; 2021 Sep; 186():886-896. PubMed ID: 34271053 [TBL] [Abstract][Full Text] [Related]
17. Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy. Sharma S; Asolekar SR; Thakur VK; Asokan P J Environ Manage; 2023 Aug; 340():117850. PubMed ID: 37105106 [TBL] [Abstract][Full Text] [Related]
18. Extraction of Lightweight Kaya AI Polymers (Basel); 2024 Feb; 16(5):. PubMed ID: 38475338 [TBL] [Abstract][Full Text] [Related]
19. Characterization of ligno-cellulosic fiber extracted from Atriplex halimus L. plant. Belouadah Z; Toubal L; Belhaneche-Bensemra N; Ati A Int J Biol Macromol; 2021 Jan; 168():806-815. PubMed ID: 33242548 [TBL] [Abstract][Full Text] [Related]
20. Extraction and characterization of novel fibers from Tecoma stans Linn bark for use as reinforcement in polymer composites. Selvan MT; Ramesh M; Sahayaraj AF; Prabu HJ; Nagarajan KJ Int J Biol Macromol; 2024 Jun; 270(Pt 2):132492. PubMed ID: 38763245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]