These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Machine and deep learning approaches for cancer drug repurposing. Issa NT; Stathias V; Schürer S; Dakshanamurthy S Semin Cancer Biol; 2021 Jan; 68():132-142. PubMed ID: 31904426 [TBL] [Abstract][Full Text] [Related]
3. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration. Wang Y; Yang Y; Chen S; Wang J Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890 [TBL] [Abstract][Full Text] [Related]
4. DeepDRA: Drug repurposing using multi-omics data integration with autoencoders. Mohammadzadeh-Vardin T; Ghareyazi A; Gharizadeh A; Abbasi K; Rabiee HR PLoS One; 2024; 19(7):e0307649. PubMed ID: 39058696 [TBL] [Abstract][Full Text] [Related]
5. From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach. Yang H; Gan L; Chen R; Li D; Zhang J; Wang Z Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36515158 [TBL] [Abstract][Full Text] [Related]
6. Artificial intelligence, machine learning, and drug repurposing in cancer. Tanoli Z; Vähä-Koskela M; Aittokallio T Expert Opin Drug Discov; 2021 Sep; 16(9):977-989. PubMed ID: 33543671 [No Abstract] [Full Text] [Related]
7. Predicting drug-target interaction network using deep learning model. You J; McLeod RD; Hu P Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415 [TBL] [Abstract][Full Text] [Related]
8. Non-Negative Matrix Tri-Factorization for Representation Learning in Multi-Omics Datasets with Applications to Drug Repurposing and Selection. Messa L; Testa C; Carelli S; Rey F; Jacchetti E; Cereda C; Raimondi MT; Ceri S; Pinoli P Int J Mol Sci; 2024 Sep; 25(17):. PubMed ID: 39273521 [TBL] [Abstract][Full Text] [Related]
9. Attention-based approach to predict drug-target interactions across seven target superfamilies. Schulman A; Rousu J; Aittokallio T; Tanoli Z Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39115379 [TBL] [Abstract][Full Text] [Related]
10. Machine Learning Approach for Predicting New Uses of Existing Drugs and Evaluation of Their Reliabilities. Fukuoka Y Methods Mol Biol; 2019; 1903():269-279. PubMed ID: 30547448 [TBL] [Abstract][Full Text] [Related]
11. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics. Koromina M; Pandi MT; Patrinos GP OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216 [TBL] [Abstract][Full Text] [Related]
12. Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier. Lin J; Chen H; Li S; Liu Y; Li X; Yu B Artif Intell Med; 2019 Jul; 98():35-47. PubMed ID: 31521251 [TBL] [Abstract][Full Text] [Related]
13. NNBGWO-BRCA marker: Neural Network and binary grey wolf optimization based Breast cancer biomarker discovery framework using multi-omics dataset. Li M; Cai Y; Zhang M; Deng S; Wang L Comput Methods Programs Biomed; 2024 Sep; 254():108291. PubMed ID: 38909399 [TBL] [Abstract][Full Text] [Related]
14. Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks. López-Cortés A; Cabrera-Andrade A; Vázquez-Naya JM; Pazos A; Gonzáles-Díaz H; Paz-Y-Miño C; Guerrero S; Pérez-Castillo Y; Tejera E; Munteanu CR Sci Rep; 2020 May; 10(1):8515. PubMed ID: 32444848 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Mottini C; Napolitano F; Li Z; Gao X; Cardone L Semin Cancer Biol; 2021 Jan; 68():59-74. PubMed ID: 31562957 [TBL] [Abstract][Full Text] [Related]
16. Drug repurposing-an emerging strategy in cancer therapeutics. Turabi KS; Deshmukh A; Paul S; Swami D; Siddiqui S; Kumar U; Naikar S; Devarajan S; Basu S; Paul MK; Aich J Naunyn Schmiedebergs Arch Pharmacol; 2022 Oct; 395(10):1139-1158. PubMed ID: 35695911 [TBL] [Abstract][Full Text] [Related]
17. The applications of deep learning algorithms on in silico druggable proteins identification. Yu L; Xue L; Liu F; Li Y; Jing R; Luo J J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750 [TBL] [Abstract][Full Text] [Related]
18. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning. Li Y; Guo Z; Gao X; Wang G Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154 [TBL] [Abstract][Full Text] [Related]
19. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Lewis JE; Kemp ML Nat Commun; 2021 May; 12(1):2700. PubMed ID: 33976213 [TBL] [Abstract][Full Text] [Related]
20. CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder. Ghafoor H; Asim MN; Ibrahim MA; Ahmed S; Dengel A Comput Biol Med; 2024 Jun; 176():108538. PubMed ID: 38759585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]