These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39169277)
1. Fe Wang S; Li J; Chen L; Zeng J; Gao M J Phys Chem Lett; 2024 Aug; 15(34):8861-8866. PubMed ID: 39169277 [TBL] [Abstract][Full Text] [Related]
2. Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T Xiao S; Yu X; Zhang L; Zhang Y; Fan W; Sun T; Zhou C; Liu Y; Liu Y; Gong M; Zhang D Int J Nanomedicine; 2019; 14():8499-8507. PubMed ID: 31695377 [TBL] [Abstract][Full Text] [Related]
3. Effects of PEG Chain Length on Relaxometric Properties of Iron Oxide Nanoparticles-Based MRI Contrast Agent. Ge J; Li C; Wang N; Zhang R; Afshari MJ; Chen C; Kou D; Zhou D; Wen L; Zeng J; Gao M Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957104 [TBL] [Abstract][Full Text] [Related]
4. Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Europium(III) DO3A as a Bimodal Imaging Probe. Carron S; Bloemen M; Vander Elst L; Laurent S; Verbiest T; Parac-Vogt TN Chemistry; 2016 Mar; 22(13):4521-7. PubMed ID: 26880696 [TBL] [Abstract][Full Text] [Related]
5. Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging. Do MA; Yoon GJ; Yeum JH; Han M; Chang Y; Choi JH Colloids Surf B Biointerfaces; 2014 Oct; 122():752-759. PubMed ID: 25194592 [TBL] [Abstract][Full Text] [Related]
6. Programmable Assembly of Iron Oxide Nanoparticles Using DNA Origami. Meyer TA; Zhang C; Bao G; Ke Y Nano Lett; 2020 Apr; 20(4):2799-2805. PubMed ID: 32208663 [TBL] [Abstract][Full Text] [Related]
7. Key Parameters on the Microwave Assisted Synthesis of Magnetic Nanoparticles for MRI Contrast Agents. Brollo MEF; Veintemillas-Verdaguer S; Salván CM; Morales MDP Contrast Media Mol Imaging; 2017; 2017():8902424. PubMed ID: 29348738 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant Iron Oxide Nanoparticles: Their Biocompatibility and Bioactive Properties. Lee J; Lee JH; Lee SY; Park SA; Kim JH; Hwang D; Kim KA; Kim HS Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958885 [TBL] [Abstract][Full Text] [Related]
9. Tuning Properties of Iron Oxide Nanoparticles in Aqueous Synthesis without Ligands to Improve MRI Relaxivity and SAR. Bonvin D; Alexander DTL; Millán A; Piñol R; Sanz B; Goya GF; Martínez A; Bastiaansen JAM; Stuber M; Schenk KJ; Hofmann H; Mionić Ebersold M Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28820442 [TBL] [Abstract][Full Text] [Related]
10. Iron Oxide Nanoparticles as T Jeon M; Halbert MV; Stephen ZR; Zhang M Adv Mater; 2021 Jun; 33(23):e1906539. PubMed ID: 32495404 [TBL] [Abstract][Full Text] [Related]
11. Tailor-made PEG coated iron oxide nanoparticles as contrast agents for long lasting magnetic resonance molecular imaging of solid cancers. Lazaro-Carrillo A; Filice M; Guillén MJ; Amaro R; Viñambres M; Tabero A; Paredes KO; Villanueva A; Calvo P; Del Puerto Morales M; Marciello M Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110262. PubMed ID: 31761230 [TBL] [Abstract][Full Text] [Related]
12. A novel synthetic route for high-index faceted iron oxide concave nanocubes with high T Situ-Loewenstein SF; Wickramasinghe S; Abenojar EC; Erokwu BO; Flask CA; Lee Z; Samia ACS J Mater Sci Mater Med; 2018 May; 29(5):58. PubMed ID: 29730814 [TBL] [Abstract][Full Text] [Related]
13. Optimization of micelle-encapsulated extremely small sized iron oxide nanoparticles as a T1 contrast imaging agent: biodistribution and safety profile. Suh M; Park JY; Ko GB; Kim JY; Hwang DW; Rees L; Conway GE; Doak SH; Kang H; Lee N; Hyeon T; Lee YS; Lee DS J Nanobiotechnology; 2024 Jul; 22(1):419. PubMed ID: 39014410 [TBL] [Abstract][Full Text] [Related]
14. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging. Mishra SK; Kumar BS; Khushu S; Tripathi RP; Gangenahalli G Contrast Media Mol Imaging; 2016 Sep; 11(5):350-361. PubMed ID: 27230705 [TBL] [Abstract][Full Text] [Related]
15. Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Zeng L; Ren W; Zheng J; Cui P; Wu A Phys Chem Chem Phys; 2012 Feb; 14(8):2631-6. PubMed ID: 22273844 [TBL] [Abstract][Full Text] [Related]
16. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer. Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789 [TBL] [Abstract][Full Text] [Related]
17. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Lee N; Hyeon T Chem Soc Rev; 2012 Apr; 41(7):2575-89. PubMed ID: 22138852 [TBL] [Abstract][Full Text] [Related]
18. Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Wu L; Wang C; Li Y Nanomedicine (Lond); 2022 Sep; 17(21):1567-1583. PubMed ID: 36458585 [TBL] [Abstract][Full Text] [Related]
19. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging. Tähkä S; Laiho A; Kostiainen MA Chemistry; 2014 Mar; 20(10):2718-22. PubMed ID: 24523066 [TBL] [Abstract][Full Text] [Related]
20. Comparative analysis of the 1H NMR relaxation enhancement produced by iron oxide and core-shell iron-iron oxide nanoparticles. Miguel OB; Gossuin Y; Morales MP; Gillis P; Muller RN; Veintemillas-Verdaguer S Magn Reson Imaging; 2007 Dec; 25(10):1437-41. PubMed ID: 17566686 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]