These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39169277)

  • 41. Enhancement of T2* Weighted MRI Imaging Sensitivity of U87MG Glioblastoma Cells Using γ-Ray Irradiated Low Molecular Weight Hyaluronic Acid-Conjugated Iron Nanoparticles.
    Huang HM; Wu PH; Chou PC; Hsiao WT; Wang HT; Chiang HP; Lee CM; Wang SH; Hsiao YC
    Int J Nanomedicine; 2021; 16():3789-3802. PubMed ID: 34103915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release.
    Basuki JS; Duong HT; Macmillan A; Erlich RB; Esser L; Akerfeldt MC; Whan RM; Kavallaris M; Boyer C; Davis TP
    ACS Nano; 2013 Nov; 7(11):10175-89. PubMed ID: 24131276
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging.
    Choi WI; Kim JY; Heo SU; Jeong YY; Kim YH; Tae G
    J Control Release; 2012 Sep; 162(2):267-75. PubMed ID: 22824783
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging.
    Unterweger H; Janko C; Schwarz M; Dézsi L; Urbanics R; Matuszak J; Őrfi E; Fülöp T; Bäuerle T; Szebeni J; Journé C; Boccaccini AR; Alexiou C; Lyer S; Cicha I
    Int J Nanomedicine; 2017; 12():5223-5238. PubMed ID: 28769560
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Smart Design of ZnFe and ZnFe@Fe Nanoparticles for MRI-Tracked Magnetic Hyperthermia Therapy: Challenging Classical Theories of Nanoparticles Growth and Nanomagnetism.
    Caro C; Guzzi C; Moral-Sánchez I; Urbano-Gámez JD; Beltrán AM; García-Martín ML
    Adv Healthc Mater; 2024 May; 13(12):e2304044. PubMed ID: 38303644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Magnetic iron oxide nanoparticles for biomedical applications.
    Laurent S; Bridot JL; Elst LV; Muller RN
    Future Med Chem; 2010 Mar; 2(3):427-49. PubMed ID: 21426176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid Nucleation of Iron Oxide Nanoclusters in Aqueous Solution by Plasma Electrochemistry.
    Bouchard M; Létourneau M; Sarra-Bournet C; Laprise-Pelletier M; Turgeon S; Chevallier P; Lagueux J; Laroche G; Fortin MA
    Langmuir; 2015 Jul; 31(27):7633-43. PubMed ID: 26086241
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging.
    Herman DA; Ferguson P; Cheong S; Hermans IF; Ruck BJ; Allan KM; Prabakar S; Spencer JL; Lendrum CD; Tilley RD
    Chem Commun (Camb); 2011 Aug; 47(32):9221-3. PubMed ID: 21761066
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hepatotoxic and Neurotoxic Potential of Iron Oxide Nanoparticles in Wistar Rats: a Biochemical and Ultrastructural Study.
    Mabrouk M; Ibrahim Fouad G; El-Sayed SAM; Rizk MZ; Beherei HH
    Biol Trace Elem Res; 2022 Aug; 200(8):3638-3665. PubMed ID: 34704196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Iron oxide nanoparticles - In vivo/in vitro biomedical applications and in silico studies.
    Nedyalkova M; Donkova B; Romanova J; Tzvetkov G; Madurga S; Simeonov V
    Adv Colloid Interface Sci; 2017 Nov; 249():192-212. PubMed ID: 28499604
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton relaxivities.
    Ye F; Laurent S; Fornara A; Astolfi L; Qin J; Roch A; Martini A; Toprak MS; Muller RN; Muhammed M
    Contrast Media Mol Imaging; 2012; 7(5):460-8. PubMed ID: 22821880
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of metal ions on endogenous melanin nanoparticles used as magnetic resonance imaging contrast agents.
    Chen A; Sun J; Liu S; Li L; Peng X; Ma L; Zhang R
    Biomater Sci; 2020 Jan; 8(1):379-390. PubMed ID: 31728481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extremely Small Iron Oxide Nanoparticle-Encapsulated Nanogels as a Glutathione-Responsive T
    Cao Y; Mao Z; He Y; Kuang Y; Liu M; Zhou Y; Zhang Y; Pei R
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):26973-26981. PubMed ID: 32452664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents.
    Lartigue L; Hugounenq P; Alloyeau D; Clarke SP; Lévy M; Bacri JC; Bazzi R; Brougham DF; Wilhelm C; Gazeau F
    ACS Nano; 2012 Dec; 6(12):10935-49. PubMed ID: 23167525
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface impact on nanoparticle-based magnetic resonance imaging contrast agents.
    Zhang W; Liu L; Chen H; Hu K; Delahunty I; Gao S; Xie J
    Theranostics; 2018; 8(9):2521-2548. PubMed ID: 29721097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future.
    Ajinkya N; Yu X; Kaithal P; Luo H; Somani P; Ramakrishna S
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33080937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relaxation Properties of Contrast Media for MRI Based on Iron Oxide Nanoparticles in Different Magnetic Fields.
    Chekhonin VP; Abakumov MA; Mazhuga AG; Bagdinova AN; Demikhov EI; Demikhov TE; Mishkinis BY; Konstantinov MV; Tarasov VP; Shumm BA; Gippius AA; Gervits NV; Shumm AB
    Bull Exp Biol Med; 2019 May; 167(1):97-99. PubMed ID: 31183644
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Iron oxide nanoparticles as positive T
    Oberdick SD; Jordanova KV; Lundstrom JT; Parigi G; Poorman ME; Zabow G; Keenan KE
    Sci Rep; 2023 Jul; 13(1):11520. PubMed ID: 37460669
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ligand-Induced Atomically Segregation-Tunable Alloy Nanoprobes for Enhanced Magnetic Resonance Imaging.
    Liang Z; Xie S; Wang Q; Zhang B; Xiao L; Wang C; Liu X; Chen Y; Yang S; Du H; Qian Y; Ling D; Wu L; Li F
    ACS Nano; 2024 Jun; 18(23):15249-15260. PubMed ID: 38818704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Iron oxide nanoparticles/nanocomposites derived from steel and iron wastes for water treatment: A review.
    Jjagwe J; Olupot PW; Carrara S
    J Environ Manage; 2023 Oct; 343():118236. PubMed ID: 37235992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.