These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39170265)
1. Harnessing transcriptomic signals for amyotrophic lateral sclerosis to identify novel drugs and enhance risk prediction. Pain O; Jones A; Al Khleifat A; Agarwal D; Hramyka D; Karoui H; Kubica J; Llewellyn DJ; Ranson JM; Yao Z; Iacoangeli A; Al-Chalabi A Heliyon; 2024 Aug; 10(15):e35342. PubMed ID: 39170265 [TBL] [Abstract][Full Text] [Related]
2. Harnessing Transcriptomic Signals for Amyotrophic Lateral Sclerosis to Identify Novel Drugs and Enhance Risk Prediction. Pain O; Jones A; Al Khleifat A; Agarwal D; Hramyka D; Karoui H; Kubica J; Llewellyn DJ; Ranson JM; Yao Z; Iacoangeli A; Al-Chalabi A medRxiv; 2023 Jan; ():. PubMed ID: 36747854 [TBL] [Abstract][Full Text] [Related]
3. An Integrative Transcriptome-Wide Analysis of Amyotrophic Lateral Sclerosis for the Identification of Potential Genetic Markers and Drug Candidates. Park S; Kim D; Song J; Joo JWJ Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809961 [TBL] [Abstract][Full Text] [Related]
4. Identifying novel genes for amyotrophic lateral sclerosis by integrating human brain proteomes with genome-wide association data. Gu XJ; Su WM; Dou M; Jiang Z; Duan QQ; Wang H; Ren YL; Cao B; Wang Y; Chen YP J Neurol; 2023 Aug; 270(8):4013-4023. PubMed ID: 37148340 [TBL] [Abstract][Full Text] [Related]
5. Identifying Candidate Genes Associated with Sporadic Amyotrophic Lateral Sclerosis via Integrative Analysis of Transcriptome-Wide Association Study and Messenger RNA Expression Profile. Li P; Cheng S; Wen Y; Cheng B; Liu L; Wu X; Ao X; Huang Z; Liao C; Li S; Zhang F; Zhang Z Cell Mol Neurobiol; 2023 Jan; 43(1):327-338. PubMed ID: 35038056 [TBL] [Abstract][Full Text] [Related]
7. Multiple-Tissue Integrative Transcriptome-Wide Association Studies Discovered New Genes Associated With Amyotrophic Lateral Sclerosis. Xiao L; Yuan Z; Jin S; Wang T; Huang S; Zeng P Front Genet; 2020; 11():587243. PubMed ID: 33329728 [TBL] [Abstract][Full Text] [Related]
8. Integrative Post-Genome-Wide Association Study Analyses Relevant to Psychiatric Disorders: Imputing Transcriptome and Proteome Signals. Gedik H; Peterson RE; Riley BP; Vladimirov VI; Bacanu SA Complex Psychiatry; 2023; 9(1-4):130-144. PubMed ID: 37588130 [TBL] [Abstract][Full Text] [Related]
9. Genome-Wide and Transcriptome-Wide Association Studies on Northern New England and Ohio Amyotrophic Lateral Sclerosis Cohorts. Li S; Gui J; Passarelli MN; Andrew AS; Sullivan KM; Cornell KA; Traynor BJ; Stark A; Chia R; Kuenzler RM; Pioro EP; Bradley WG; Stommel EW Neurol Genet; 2024 Oct; 10(5):e200188. PubMed ID: 39246739 [TBL] [Abstract][Full Text] [Related]
10. Causal Inference of Genetic Variants and Genes in Amyotrophic Lateral Sclerosis. Pan S; Liu X; Liu T; Zhao Z; Dai Y; Wang YY; Jia P; Liu F Front Genet; 2022; 13():917142. PubMed ID: 35812739 [TBL] [Abstract][Full Text] [Related]
11. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 141 risk genes for Alzheimer's disease dementia. Guo S; Yang J Alzheimers Res Ther; 2024 Jun; 16(1):120. PubMed ID: 38824563 [TBL] [Abstract][Full Text] [Related]
12. Proteome-wide association studies using summary pQTL data of three tissues identified 30 risk genes of Alzheimer's disease dementia. Hu T; Liu Q; Dai Q; Parrish RL; Buchman AS; Tasaki S; Seyfried NT; Wang Y; Bennett DA; De Jager PL; Epstein MP; Yang J medRxiv; 2024 Sep; ():. PubMed ID: 38585769 [TBL] [Abstract][Full Text] [Related]
13. From GWAS to Gene: Transcriptome-Wide Association Studies and Other Methods to Functionally Understand GWAS Discoveries. Li B; Ritchie MD Front Genet; 2021; 12():713230. PubMed ID: 34659337 [TBL] [Abstract][Full Text] [Related]
14. TBK1, a prioritized drug repurposing target for amyotrophic lateral sclerosis: evidence from druggable genome Mendelian randomization and pharmacological verification in vitro. Duan QQ; Wang H; Su WM; Gu XJ; Shen XF; Jiang Z; Ren YL; Cao B; Li GB; Wang Y; Chen YP BMC Med; 2024 Mar; 22(1):96. PubMed ID: 38443977 [TBL] [Abstract][Full Text] [Related]
15. Bayesian genome-wide TWAS with reference transcriptomic data of brain and blood tissues identified 93 risk genes for Alzheimer's disease dementia. Guo S; Yang J medRxiv; 2023 Jul; ():. PubMed ID: 37503151 [TBL] [Abstract][Full Text] [Related]
16. Abnormal Brain Protein Abundance and Cross-tissue mRNA Expression in Amyotrophic Lateral Sclerosis. Ma Y; Jia T; Qin F; He Y; Han F; Zhang C Mol Neurobiol; 2024 Jan; 61(1):510-518. PubMed ID: 37639066 [TBL] [Abstract][Full Text] [Related]
17. Characterizing proteomic and transcriptomic features of missense variants in amyotrophic lateral sclerosis genes. Dilliott AA; Kwon S; Rouleau GA; Iqbal S; Farhan SMK Brain; 2023 Nov; 146(11):4608-4621. PubMed ID: 37394881 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide genetic links between amyotrophic lateral sclerosis and autoimmune diseases. Li CY; Yang TM; Ou RW; Wei QQ; Shang HF BMC Med; 2021 Feb; 19(1):27. PubMed ID: 33541344 [TBL] [Abstract][Full Text] [Related]
19. Joint analysis of proteome, transcriptome, and multi-trait analysis to identify novel Parkinson's disease risk genes. Shi JJ; Mao CY; Guo YZ; Fan Y; Hao XY; Li SJ; Tian J; Hu ZW; Li MJ; Li JD; Ma DR; Guo MN; Zuo CY; Liang YY; Xu YM; Yang J; Shi CH Aging (Albany NY); 2024 Jan; 16(2):1555-1580. PubMed ID: 38240717 [TBL] [Abstract][Full Text] [Related]
20. Spatial enrichment and genomic analyses reveal the link of NOMO1 with amyotrophic lateral sclerosis. Guo J; You L; Zhou Y; Hu J; Li J; Yang W; Tang X; Sun Y; Gu Y; Dong Y; Chen X; Sato C; Zinman L; Rogaeva E; Wang J; Chen Y; Zhang M Brain; 2024 Aug; 147(8):2826-2841. PubMed ID: 38643019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]