These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 39170600)

  • 1. The decoder design and performance comparative analysis for closed-loop brain-machine interface system.
    Pan H; Fu Y; Zhang Q; Zhang J; Qin X
    Cogn Neurodyn; 2024 Feb; 18(1):147-164. PubMed ID: 39170600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical comparison of deep learning methods for EEG decoding.
    de Oliveira IH; Rodrigues AC
    Front Neurosci; 2022; 16():1003984. PubMed ID: 36704007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain-machine interfaces.
    Tan J; Zhang X; Wu S; Song Z; Chen S; Huang Y; Wang Y
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37812934
    [No Abstract]   [Full Text] [Related]  

  • 4. Auxiliary controller design and performance comparative analysis in closed-loop brain-machine interface system.
    Pan H; Song H; Zhang Q; Mi W; Sun J
    Biol Cybern; 2022 Feb; 116(1):23-32. PubMed ID: 34605976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.
    Li S; Li J; Li Z
    Front Neurosci; 2016; 10():587. PubMed ID: 28066170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User Adaptation to Closed-Loop Decoding of Motor Imagery Termination.
    Orset B; Lee K; Chavarriaga R; Millan JDR
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):3-10. PubMed ID: 32746025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training in Use of Brain-Machine Interface-Controlled Robotic Hand Improves Accuracy Decoding Two Types of Hand Movements.
    Fukuma R; Yanagisawa T; Yokoi H; Hirata M; Yoshimine T; Saitoh Y; Kamitani Y; Kishima H
    Front Neurosci; 2018; 12():478. PubMed ID: 30050405
    [No Abstract]   [Full Text] [Related]  

  • 8. A new full closed-loop brain-machine interface approach based on neural activity: A study based on modeling and experimental studies.
    Amiri M; Nazari S; Jafari AH; Makkiabadi B
    Heliyon; 2023 Mar; 9(3):e13766. PubMed ID: 36851970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-loop decoder adaptation on intermediate time-scales facilitates rapid BMI performance improvements independent of decoder initialization conditions.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jul; 20(4):468-77. PubMed ID: 22772374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic optimal control as a theory of brain-machine interface operation.
    Lagang M; Srinivasan L
    Neural Comput; 2013 Feb; 25(2):374-417. PubMed ID: 23148413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain-Machine Interface.
    Zhang P; Chao L; Chen Y; Ma X; Wang W; He J; Huang J; Li Q
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 13. Decoding continuous limb movements from high-density epidural electrode arrays using custom spatial filters.
    Marathe AR; Taylor DM
    J Neural Eng; 2013 Jun; 10(3):036015. PubMed ID: 23611833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiscale brain-machine interface decoders.
    Han-Lin Hsieh ; Shanechi MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6361-6364. PubMed ID: 28269704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-Machine Interface Control Algorithms.
    Shanechi MM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1725-1734. PubMed ID: 28113323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Characterization of Brain-Computer Interface Performance Trade-Offs Using Support Vector Machines and Deep Neural Networks to Decode Movement Intent.
    Skomrock ND; Schwemmer MA; Ting JE; Trivedi HR; Sharma G; Bockbrader MA; Friedenberg DA
    Front Neurosci; 2018; 12():763. PubMed ID: 30459542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of brain-computer interface decoding algorithms in open-loop and closed-loop control.
    Koyama S; Chase SM; Whitford AS; Velliste M; Schwartz AB; Kass RE
    J Comput Neurosci; 2010 Aug; 29(1-2):73-87. PubMed ID: 19904595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.
    Shanechi MM; Orsborn A; Moorman H; Gowda S; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6493-6. PubMed ID: 25571483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.