These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 39171653)

  • 1. Interpretable machine learning models based on shear-wave elastography radiomics for predicting cardiovascular disease in diabetic kidney disease patients.
    Dai R; Sun M; Lu M; Deng L
    J Diabetes Investig; 2024 Nov; 15(11):1637-1650. PubMed ID: 39171653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Interpretable Machine Learning Models Based on Ultrasonic Radiomics for Predicting the Risk of Fibrosis Progression in Diabetic Patients with Nonalcoholic Fatty Liver Disease.
    Meng F; Wu Q; Zhang W; Hou S
    Diabetes Metab Syndr Obes; 2023; 16():3901-3913. PubMed ID: 38077485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting postoperative rehemorrhage in hypertensive intracerebral hemorrhage using noncontrast CT radiomics and clinical data with an interpretable machine learning approach.
    Wang W; Dai J; Li J; Du X
    Sci Rep; 2024 Apr; 14(1):9717. PubMed ID: 38678066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-Wave Elastography-Based Radiomics Nomogram for the Prediction of Cardiovascular Disease in Patients with Diabetic Kidney Disease.
    Meng F; Wu Q; Zhang W; Hou S
    Diabetes Metab Syndr Obes; 2023; 16():2705-2716. PubMed ID: 37701720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features.
    Wang J; Gao W; Lu M; Yao X; Yang D
    Front Oncol; 2023; 13():1290313. PubMed ID: 38044998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing evaluation of endometrial receptivity in recurrent pregnancy loss: a preliminary investigation integrating radiomics from multimodal ultrasound via machine learning.
    Yan S; Xiong F; Xin Y; Zhou Z; Liu W
    Front Endocrinol (Lausanne); 2024; 15():1380829. PubMed ID: 39229381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.
    Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M
    J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators].
    Guo Z; Shao J; Zou X; Zhao Q; Qian P; Wang W; Huang L; Xue J; Xu J; Yang K; Zhou X; Li S
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2024 Jun; 36(3):251-258. PubMed ID: 38952311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study.
    Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M
    Acad Radiol; 2024 Aug; 31(8):3384-3396. PubMed ID: 38508934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Clinical-radiomic Nomogram for the Non-invasive Evaluation of Glomerular Status in Diabetic Kidney Disease.
    Xiao W; Zhang D; Hu X; Yin C; Liu X; Wang D; Yao J; Liu X; Zhang C; Qin X
    Curr Med Imaging; 2024; 20():e15734056307336. PubMed ID: 38988164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable machine learning model integrating clinical and elastosonographic features to detect renal fibrosis in Asian patients with chronic kidney disease.
    Chen Z; Wang Y; Ying MTC; Su Z
    J Nephrol; 2024 May; 37(4):1027-1039. PubMed ID: 38315278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study.
    Liu Z; Luo C; Chen X; Feng Y; Feng J; Zhang R; Ouyang F; Li X; Tan Z; Deng L; Chen Y; Cai Z; Zhang X; Liu J; Liu W; Guo B; Hu Q
    Int J Surg; 2024 Feb; 110(2):1039-1051. PubMed ID: 37924497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning model for cardiovascular disease prediction in patients with chronic kidney disease.
    Zhu H; Qiao S; Zhao D; Wang K; Wang B; Niu Y; Shang S; Dong Z; Zhang W; Zheng Y; Chen X
    Front Endocrinol (Lausanne); 2024; 15():1390729. PubMed ID: 38863928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Interpretable Radiomics Model Based on Two-Dimensional Shear Wave Elastography for Predicting Symptomatic Post-Hepatectomy Liver Failure in Patients with Hepatocellular Carcinoma.
    Zhong X; Salahuddin Z; Chen Y; Woodruff HC; Long H; Peng J; Xie X; Lin M; Lambin P
    Cancers (Basel); 2023 Nov; 15(21):. PubMed ID: 37958476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a machine learning-based model for the prediction and progression of diabetic kidney disease: A single centred retrospective study.
    Nayak S; Amin A; Reghunath SR; Thunga G; Acharya U D; Shivashankara KN; Prabhu Attur R; Acharya LD
    Int J Med Inform; 2024 Oct; 190():105546. PubMed ID: 39003788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and internal validation of machine learning algorithms for end-stage renal disease risk prediction model of people with type 2 diabetes mellitus and diabetic kidney disease.
    Zou Y; Zhao L; Zhang J; Wang Y; Wu Y; Ren H; Wang T; Zhang R; Wang J; Zhao Y; Qin C; Xu H; Li L; Chai Z; Cooper ME; Tong N; Liu F
    Ren Fail; 2022 Dec; 44(1):562-570. PubMed ID: 35373711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-contrast CT radiomics and machine learning for outcomes prediction of patients with acute ischemic stroke receiving conventional treatment.
    Zhang L; Wu J; Yu R; Xu R; Yang J; Fan Q; Wang D; Zhang W
    Eur J Radiol; 2023 Aug; 165():110959. PubMed ID: 37437435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting diabetic kidney disease for type 2 diabetes mellitus by machine learning in the real world: a multicenter retrospective study.
    Liu XZ; Duan M; Huang HD; Zhang Y; Xiang TY; Niu WC; Zhou B; Wang HL; Zhang TT
    Front Endocrinol (Lausanne); 2023; 14():1184190. PubMed ID: 37469989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of ultrasound radiomics based models for classification of liver fibrosis due to Schistosoma japonicum infection.
    Guo Z; Zhao M; Liu Z; Zheng J; Gong Y; Huang L; Xue J; Zhou X; Li S
    PLoS Negl Trop Dis; 2024 Jun; 18(6):e0012235. PubMed ID: 38870200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.