These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39171711)
1. The effect of chemical doping on the lithiation processes of the crystalline Si anode ‒ A first-principles study. Chiang HH; Pan LY; Kuo CL J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39171711 [TBL] [Abstract][Full Text] [Related]
2. Improving the performance of silicon monoxide anodes Xie W; Pang C; He P; Xiao C; Koyama M; Wang J; Qi X; Ren J; He X Phys Chem Chem Phys; 2022 Mar; 24(12):7405-7414. PubMed ID: 35266492 [TBL] [Abstract][Full Text] [Related]
3. Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. Ostadhossein A; Cubuk ED; Tritsaris GA; Kaxiras E; Zhang S; van Duin AC Phys Chem Chem Phys; 2015 Feb; 17(5):3832-40. PubMed ID: 25559797 [TBL] [Abstract][Full Text] [Related]
4. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. Chan MK; Wolverton C; Greeley JP J Am Chem Soc; 2012 Sep; 134(35):14362-74. PubMed ID: 22817384 [TBL] [Abstract][Full Text] [Related]
5. A First Molecular Dynamics Study for Modeling the Microstructure and Mechanical Behavior of Si Nanopillars during Lithiation. Shuang F; Aifantis KE ACS Appl Mater Interfaces; 2021 May; 13(18):21310-21319. PubMed ID: 33913679 [TBL] [Abstract][Full Text] [Related]
6. The mixing mechanism during lithiation of Si negative electrode in Li-ion batteries: an ab initio molecular dynamics study. Johari P; Qi Y; Shenoy VB Nano Lett; 2011 Dec; 11(12):5494-500. PubMed ID: 22077884 [TBL] [Abstract][Full Text] [Related]
7. First-principles prediction on antimony-doping effects on the cyclic stability of tin anodes for lithium-ion batteries. Yu J; Yang TH; Hao W; Lee M; Hwang GS Phys Chem Chem Phys; 2022 Jul; 24(29):17542-17546. PubMed ID: 35822323 [TBL] [Abstract][Full Text] [Related]
8. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. McDowell MT; Lee SW; Harris JT; Korgel BA; Wang C; Nix WD; Cui Y Nano Lett; 2013 Feb; 13(2):758-64. PubMed ID: 23323680 [TBL] [Abstract][Full Text] [Related]
9. Boron doped defective graphene as a potential anode material for Li-ion batteries. Hardikar RP; Das D; Han SS; Lee KR; Singh AK Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702 [TBL] [Abstract][Full Text] [Related]
10. Unlocking High-Current Performance in Silicon Anode: Synergistic Phosphorus Doping and Nitrogen-Doped Carbon Encapsulation to Enhance Lithium Diffusivity. Firdaus AM; Hawari NH; Adios CG; Nasution PM; Peiner E; Wasisto HS; Sumboja A Chem Asian J; 2024 Apr; 19(7):e202400036. PubMed ID: 38414228 [TBL] [Abstract][Full Text] [Related]
11. Ab Initio Study of the Electronic Properties of a Silicene Anode Subjected to Transmutation Doping. Galashev AY; Vorob'ev AS Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769185 [TBL] [Abstract][Full Text] [Related]
12. Effect of non-magnetic doping on magnetic state and Li/Na adsorption and diffusion of black phosphorene. Zhong K; Li J; Xu G; Zhang JM; Huang Z J Phys Condens Matter; 2022 May; 34(28):. PubMed ID: 35472760 [TBL] [Abstract][Full Text] [Related]
13. A comparative first-principles study of the lithiation, sodiation, and magnesiation of black phosphorus for Li-, Na-, and Mg-ion batteries. Hembram KP; Jung H; Yeo BC; Pai SJ; Lee HJ; Lee KR; Han SS Phys Chem Chem Phys; 2016 Aug; 18(31):21391-7. PubMed ID: 27425818 [TBL] [Abstract][Full Text] [Related]
14. Lithium/Boron Co-doped Micrometer SiO Li XD; Zhao YM; Tian YF; Lu ZY; Fan M; Zhang XS; Tian H; Xu Q; Li HL; Guo YG ACS Appl Mater Interfaces; 2022 Jun; 14(24):27854-27860. PubMed ID: 35678306 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Liu XH; Zhang LQ; Zhong L; Liu Y; Zheng H; Wang JW; Cho JH; Dayeh SA; Picraux ST; Sullivan JP; Mao SX; Ye ZZ; Huang JY Nano Lett; 2011 Jun; 11(6):2251-8. PubMed ID: 21563798 [TBL] [Abstract][Full Text] [Related]
16. Bending deformation modulation of the optoelectronic properties of molybdenum ditelluride doped with nonmetallic atoms X (X = B, C, N, O): a first-principles study. Dai Y; Liu G; He J; Yang Z; Zhang G J Mol Model; 2024 Mar; 30(4):94. PubMed ID: 38443609 [TBL] [Abstract][Full Text] [Related]
17. Solid-State Electrocatalysis in Heteroatom-Doped Alloy Anode Enables Ultrafast Charge Lithium-Ion Batteries. Zhou E; Jin H; Lv H; Xie Y; Lu Y; Lu YR; Chan TS; Wang C; Yan W; Zhang J; Ji H; Wu X; Duan X J Am Chem Soc; 2024 Jul; 146(30):20700-20708. PubMed ID: 39019580 [TBL] [Abstract][Full Text] [Related]
18. Large areal capacity all-in-one lithium-ion battery based on boron-doped silicon/carbon hybrid anode material and cellulose framework. Zhou W; Chen J; Xu X; Han X; Chen M; Yang L; Hirano SI J Colloid Interface Sci; 2022 Apr; 612():679-688. PubMed ID: 35032925 [TBL] [Abstract][Full Text] [Related]
19. Interfacial Reactions in the Li/Si diffusion couples: Origin of Anisotropic Lithiation of Crystalline Si in Li-Si batteries. Choi YS; Park JH; Ahn JP; Lee JC Sci Rep; 2017 Oct; 7(1):14028. PubMed ID: 29070873 [TBL] [Abstract][Full Text] [Related]
20. Atomistics of the lithiation of oxidized silicon (SiO Jung H; Yeo BC; Lee KR; Han SS Phys Chem Chem Phys; 2016 Nov; 18(47):32078-32086. PubMed ID: 27819103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]