These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39172034)
1. Fluorinated Amide-Based Electrolytes Induce a Sustained Low-Charging Voltage Plateau under Conditions Verifying the Feasibility of Achieving 500 Wh kg Nishioka K; Tanaka M; Goto T; Haas R; Henss A; Azuma S; Saito M; Matsuda S; Yu W; Nishihara H; Fujimoto H; Tobisu M; Mukouyama Y; Nakanishi S ACS Appl Mater Interfaces; 2024 Sep; 16(35):46259-46269. PubMed ID: 39172034 [TBL] [Abstract][Full Text] [Related]
2. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries. Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006 [TBL] [Abstract][Full Text] [Related]
3. Poor Cycling Performance of Rechargeable Lithium-Oxygen Batteries under Lean-Electrolyte and High-Areal-Capacity Conditions: Role of Carbon Electrode Decomposition. Ono M; Saengkaew J; Matsuda S Adv Sci (Weinh); 2023 Aug; 10(24):e2300896. PubMed ID: 37338292 [TBL] [Abstract][Full Text] [Related]
4. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries. Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582 [TBL] [Abstract][Full Text] [Related]
5. Non-Flammable Electrolyte Enables High-Voltage and Wide-Temperature Lithium-Ion Batteries with Fast Charging. Zou Y; Ma Z; Liu G; Li Q; Yin D; Shi X; Cao Z; Tian Z; Kim H; Guo Y; Sun C; Cavallo L; Wang L; Alshareef HN; Sun YK; Ming J Angew Chem Int Ed Engl; 2023 Feb; 62(8):e202216189. PubMed ID: 36567260 [TBL] [Abstract][Full Text] [Related]
6. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Zhang G; Chang J; Wang L; Li J; Wang C; Wang R; Shi G; Yu K; Huang W; Zheng H; Wu T; Deng Y; Lu J Nat Commun; 2023 Feb; 14(1):1081. PubMed ID: 36841814 [TBL] [Abstract][Full Text] [Related]
7. Nature of Li Gao Y; Asahina H; Matsuda S; Noguchi H; Uosaki K Phys Chem Chem Phys; 2024 May; 26(18):13655-13666. PubMed ID: 38587036 [TBL] [Abstract][Full Text] [Related]
9. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. Shu C; Wang J; Long J; Liu HK; Dou SX Adv Mater; 2019 Apr; 31(15):e1804587. PubMed ID: 30767276 [TBL] [Abstract][Full Text] [Related]
10. Overlooked Factors Required for Electrolyte Solvents in Li-O Nishioka K; Tanaka M; Fujimoto H; Amaya T; Ogoshi S; Tobisu M; Nakanishi S Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202112769. PubMed ID: 35076163 [TBL] [Abstract][Full Text] [Related]
11. Reversible Discharge Products in Li-Air Batteries. Liu T; Zhao S; Xiong Q; Yu J; Wang J; Huang G; Ni M; Zhang X Adv Mater; 2023 May; 35(20):e2208925. PubMed ID: 36502282 [TBL] [Abstract][Full Text] [Related]
12. Robust oxygen adsorbent mediated oxygen redox reactions for high performance lithium-oxygen battery. Du D; Liu P; Tian G; Xu H; Wang X; Liu S; Fan F; Wang S; Wang C; Zeng C; Shu C J Colloid Interface Sci; 2025 Jan; 678(Pt B):570-577. PubMed ID: 39265329 [TBL] [Abstract][Full Text] [Related]
13. High-Energy Density Li-O Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667 [TBL] [Abstract][Full Text] [Related]
14. A High-Performance Li-O Zhou B; Guo L; Zhang Y; Wang J; Ma L; Zhang WH; Fu Z; Peng Z Adv Mater; 2017 Aug; 29(30):. PubMed ID: 28585309 [TBL] [Abstract][Full Text] [Related]
15. Operando Observation of the De-Evolution/Evolution Process of Hydrated LiOH in Moisture-Assisted Li-O Kim H; Lee H; Choi W; Yoon G; Jung C; Kim M; Kim T; Park J; Im D ACS Appl Mater Interfaces; 2023 Jun; 15(24):29120-29126. PubMed ID: 37294066 [TBL] [Abstract][Full Text] [Related]
16. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
17. Fluorinated Nonflammable In Situ Gel Polymer Electrolyte for High-Voltage Lithium Metal Batteries. Wang F; Zhong J; Guo Y; Han Q; Liu H; Du J; Tian J; Tang S; Cao Y ACS Appl Mater Interfaces; 2023 Aug; 15(33):39265-39275. PubMed ID: 37540007 [TBL] [Abstract][Full Text] [Related]
18. Methylation enables the use of fluorine-free ether electrolytes in high-voltage lithium metal batteries. Li AM; Borodin O; Pollard TP; Zhang W; Zhang N; Tan S; Chen F; Jayawardana C; Lucht BL; Hu E; Yang XQ; Wang C Nat Chem; 2024 Jun; 16(6):922-929. PubMed ID: 38570729 [TBL] [Abstract][Full Text] [Related]
20. A Sustainable Solid Electrolyte Interphase for High-Energy-Density Lithium Metal Batteries Under Practical Conditions. Zhang XQ; Li T; Li BQ; Zhang R; Shi P; Yan C; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2020 Feb; 59(8):3252-3257. PubMed ID: 31756011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]