These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39172927)
1. Slip Opacity and Fast Osmotic Transport of Hydrophobes at Aqueous Interfaces with Two-Dimensional Materials. Bilichenko M; Iannuzzi M; Tocci G ACS Nano; 2024 Sep; 18(35):24118-24127. PubMed ID: 39172927 [TBL] [Abstract][Full Text] [Related]
2. The role of the water contact layer on hydration and transport at solid/liquid interfaces. Gäding J; Della Balda V; Lan J; Konrad J; Iannuzzi M; Meißner RH; Tocci G Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2407877121. PubMed ID: 39259594 [TBL] [Abstract][Full Text] [Related]
3. Osmotic Transport at the Aqueous Graphene and hBN Interfaces: Scaling Laws from a Unified, First-Principles Description. Joly L; Meißner RH; Iannuzzi M; Tocci G ACS Nano; 2021 Sep; 15(9):15249-15258. PubMed ID: 34491721 [TBL] [Abstract][Full Text] [Related]
4. Ab initio nanofluidics: disentangling the role of the energy landscape and of density correlations on liquid/solid friction. Tocci G; Bilichenko M; Joly L; Iannuzzi M Nanoscale; 2020 May; 12(20):10994-11000. PubMed ID: 32426791 [TBL] [Abstract][Full Text] [Related]
5. Interfacial Interactions in van der Waals Heterostructures of MoS Li H; Wu JB; Ran F; Lin ML; Liu XL; Zhao Y; Lu X; Xiong Q; Zhang J; Huang W; Zhang H; Tan PH ACS Nano; 2017 Nov; 11(11):11714-11723. PubMed ID: 29068659 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of AAB-Stacked Single-Crystal Graphene/hBN/Graphene Trilayer van der Waals Heterostructures by In Situ CVD. Tian B; Li J; Chen M; Dong H; Zhang X Adv Sci (Weinh); 2022 Jul; 9(21):e2201324. PubMed ID: 35618473 [TBL] [Abstract][Full Text] [Related]
7. MoS Sun Y; Zhong W; Wang Y; Xu X; Wang T; Wu L; Du Y ACS Appl Mater Interfaces; 2017 Oct; 9(39):34243-34255. PubMed ID: 28901126 [TBL] [Abstract][Full Text] [Related]
8. Frustrated van der Waals heterostructures. Tawfik SA Nanoscale; 2024 Oct; ():. PubMed ID: 39420645 [TBL] [Abstract][Full Text] [Related]
9. Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Tocci G; Joly L; Michaelides A Nano Lett; 2014 Dec; 14(12):6872-7. PubMed ID: 25394228 [TBL] [Abstract][Full Text] [Related]
10. Modulating Water Slip Using Atomic-Scale Defects: Friction on Realistic Hexagonal Boron Nitride Surfaces. Seal A; Govind Rajan A Nano Lett; 2021 Oct; 21(19):8008-8016. PubMed ID: 34606287 [TBL] [Abstract][Full Text] [Related]
11. Thermal conductivity of van der Waals heterostructure of 2D GeS and SnS based on machine learning interatomic potential. Li W; Yang C J Phys Condens Matter; 2023 Sep; 35(50):. PubMed ID: 37669661 [TBL] [Abstract][Full Text] [Related]
12. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716 [TBL] [Abstract][Full Text] [Related]
13. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
14. Dielectric Genome of van der Waals Heterostructures. Andersen K; Latini S; Thygesen KS Nano Lett; 2015 Jul; 15(7):4616-21. PubMed ID: 26047386 [TBL] [Abstract][Full Text] [Related]
15. Instability, dynamics, and morphology of thin slipping films. Kargupta K; Sharma A; Khanna R Langmuir; 2004 Jan; 20(1):244-53. PubMed ID: 15745028 [TBL] [Abstract][Full Text] [Related]
16. Direct synthesis of van der Waals solids. Lin YC; Lu N; Perea-Lopez N; Li J; Lin Z; Peng X; Lee CH; Sun C; Calderin L; Browning PN; Bresnehan MS; Kim MJ; Mayer TS; Terrones M; Robinson JA ACS Nano; 2014 Apr; 8(4):3715-23. PubMed ID: 24641706 [TBL] [Abstract][Full Text] [Related]
17. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. Diaz HC; Avila J; Chen C; Addou R; Asensio MC; Batzill M Nano Lett; 2015 Feb; 15(2):1135-40. PubMed ID: 25629211 [TBL] [Abstract][Full Text] [Related]
18. Molecular Dynamics Simulation on In-Plane Thermal Conductivity of Graphene/Hexagonal Boron Nitride van der Waals Heterostructures. Yang Y; Ma J; Yang J; Zhang Y ACS Appl Mater Interfaces; 2022 Oct; 14(40):45742-45751. PubMed ID: 36172714 [TBL] [Abstract][Full Text] [Related]
19. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures. Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the mechanical properties of van der Waals heterostructures of stanene adsorbed on graphene, hexagonal boron-nitride and silicon carbide. Rahman MH; Chowdhury EH; Redwan DA; Mitra S; Hong S Phys Chem Chem Phys; 2021 Mar; 23(9):5244-5253. PubMed ID: 33629670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]