These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 39173222)
1. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. Zheng X; Lin H; Du D; Li G; Alam O; Cheng Z; Liu X; Jiang S; Li J Ecotoxicol Environ Saf; 2024 Oct; 284():116883. PubMed ID: 39173222 [TBL] [Abstract][Full Text] [Related]
2. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. Naz M; Afzal MR; Qi SS; Dai Z; Sun Q; Du D Chemosphere; 2024 Oct; 365():143397. PubMed ID: 39313079 [TBL] [Abstract][Full Text] [Related]
3. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Ojuederie OB; Babalola OO Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531 [TBL] [Abstract][Full Text] [Related]
4. Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. Tang H; Xiang G; Xiao W; Yang Z; Zhao B Front Plant Sci; 2024; 15():1420408. PubMed ID: 39100088 [TBL] [Abstract][Full Text] [Related]
5. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. Harindintwali JD; Zhou J; Yang W; Gu Q; Yu X Ecotoxicol Environ Saf; 2020 Nov; 204():111020. PubMed ID: 32810706 [TBL] [Abstract][Full Text] [Related]
6. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: Advances and ecological risk assessment. Wu C; Li F; Yi S; Ge F J Environ Manage; 2021 Oct; 296():113185. PubMed ID: 34243092 [TBL] [Abstract][Full Text] [Related]
7. How a functional soil animal-earthworm affect arbuscular mycorrhizae-assisted phytoremediation in metals contaminated soil? Wang L; Yang D; Chen R; Ma F; Wang G J Hazard Mater; 2022 Aug; 435():128991. PubMed ID: 35650720 [TBL] [Abstract][Full Text] [Related]
8. Promises and potential of Khan AG Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria. Chen Z; Liu Q; Chen D; Wu Y; Hamid Y; Lin Q; Zhang S; Feng Y; He Z; Yin X; Yang X Sci Total Environ; 2024 Jul; 932():173029. PubMed ID: 38719039 [TBL] [Abstract][Full Text] [Related]
10. Miscanthus sp. root exudate alters rhizosphere microbial community to drive soil aggregation for heavy metal immobilization. Wu B; Li X; Lin S; Jiao R; Yang X; Shi A; Nie X; Lin Q; Qiu R Sci Total Environ; 2024 Nov; 949():175009. PubMed ID: 39053533 [TBL] [Abstract][Full Text] [Related]
11. Bioremediation of hazardous heavy metals by marine microorganisms: a recent review. Alabssawy AN; Hashem AH Arch Microbiol; 2024 Feb; 206(3):103. PubMed ID: 38358529 [TBL] [Abstract][Full Text] [Related]
12. Plant growth-promoting rhizobacterial secondary metabolites in augmenting heavy metal(loid) phytoremediation: An integrated green in situ ecorestorative technology. Mukherjee P; Dutta J; Roy M; Thakur TK; Mitra A Environ Sci Pollut Res Int; 2024 Sep; 31(44):55851-55894. PubMed ID: 39251536 [TBL] [Abstract][Full Text] [Related]
13. [Mechanism and Application of Plant Growth-Promoting Bacteria in Heavy Metal Bioremediation]. Ma Y; Wang Y; Shi XJ; Chen XP; Li ZL Huan Jing Ke Xue; 2022 Sep; 43(9):4911-4922. PubMed ID: 36096631 [TBL] [Abstract][Full Text] [Related]
14. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Phieler R; Voit A; Kothe E Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709 [TBL] [Abstract][Full Text] [Related]
15. Helping plants to deal with heavy metal stress: the role of nanotechnology and plant growth promoting rhizobacteria in the process of phytoremediation. Gulzar ABM; Mazumder PB Environ Sci Pollut Res Int; 2022 Jun; 29(27):40319-40341. PubMed ID: 35316490 [TBL] [Abstract][Full Text] [Related]
16. Phytoextraction of heavy metals from contaminated soil, water and atmosphere using ornamental plants: mechanisms and efficiency improvement strategies. Asgari Lajayer B; Khadem Moghadam N; Maghsoodi MR; Ghorbanpour M; Kariman K Environ Sci Pollut Res Int; 2019 Mar; 26(9):8468-8484. PubMed ID: 30712209 [TBL] [Abstract][Full Text] [Related]
17. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Liu N; Zhao J; Du J; Hou C; Zhou X; Chen J; Zhang Y Sci Total Environ; 2024 Oct; 948():174237. PubMed ID: 38942300 [TBL] [Abstract][Full Text] [Related]
18. Recent advances in phyto-combined remediation of heavy metal pollution in soil. Deng S; Zhang X; Zhu Y; Zhuo R Biotechnol Adv; 2024; 72():108337. PubMed ID: 38460740 [TBL] [Abstract][Full Text] [Related]
19. The role of metal transporters in phytoremediation: A closer look at Arabidopsis. Maharajan T; Chellasamy G; Tp AK; Ceasar SA; Yun K Chemosphere; 2023 Jan; 310():136881. PubMed ID: 36257391 [TBL] [Abstract][Full Text] [Related]
20. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]