These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39173422)
41. Metagenomic approaches in microbial ecology: an update on whole-genome and marker gene sequencing analyses. Pérez-Cobas AE; Gomez-Valero L; Buchrieser C Microb Genom; 2020 Aug; 6(8):. PubMed ID: 32706331 [TBL] [Abstract][Full Text] [Related]
42. CSSSCL: a python package that uses combined sequence similarity scores for accurate taxonomic classification of long and short sequence reads. Borozan I; Ferretti V Bioinformatics; 2016 Feb; 32(3):453-5. PubMed ID: 26454281 [TBL] [Abstract][Full Text] [Related]
43. RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets. Scheuch M; Höper D; Beer M BMC Bioinformatics; 2015 Mar; 16(1):69. PubMed ID: 25886935 [TBL] [Abstract][Full Text] [Related]
44. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data. Chen JC; Tyler AD Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990 [TBL] [Abstract][Full Text] [Related]
45. A compressive seeding algorithm in conjunction with reordering-based compression. Ji F; Zhou Q; Ruan J; Zhu Z; Liu X Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38377404 [TBL] [Abstract][Full Text] [Related]
46. TAMA: improved metagenomic sequence classification through meta-analysis. Sim M; Lee J; Lee D; Kwon D; Kim J BMC Bioinformatics; 2020 May; 21(1):185. PubMed ID: 32397982 [TBL] [Abstract][Full Text] [Related]
47. CHEER: HierarCHical taxonomic classification for viral mEtagEnomic data via deep leaRning. Shang J; Sun Y Methods; 2021 May; 189():95-103. PubMed ID: 32454212 [TBL] [Abstract][Full Text] [Related]
48. Tamock: simulation of habitat-specific benchmark data in metagenomics. Gerner SM; Graf AB; Rattei T BMC Bioinformatics; 2021 May; 22(1):227. PubMed ID: 33932979 [TBL] [Abstract][Full Text] [Related]
50. cgMSI: pathogen detection within species from nanopore metagenomic sequencing data. Zhu X; Zhao L; Huang L; Yang W; Wang L; Yu R BMC Bioinformatics; 2023 Oct; 24(1):387. PubMed ID: 37821827 [TBL] [Abstract][Full Text] [Related]
51. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline. Lin YY; Hsieh CH; Chen JH; Lu X; Kao JH; Chen PJ; Chen DS; Wang HY BMC Bioinformatics; 2017 Apr; 18(1):223. PubMed ID: 28446139 [TBL] [Abstract][Full Text] [Related]
52. CONSULT-II: accurate taxonomic identification and profiling using locality-sensitive hashing. Şapcı AOB; Rachtman E; Mirarab S Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38492564 [TBL] [Abstract][Full Text] [Related]
53. taxMaps: comprehensive and highly accurate taxonomic classification of short-read data in reasonable time. Corvelo A; Clarke WE; Robine N; Zody MC Genome Res; 2018 May; 28(5):751-758. PubMed ID: 29588360 [TBL] [Abstract][Full Text] [Related]
54. Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. Liu B; Gibbons T; Ghodsi M; Treangen T; Pop M BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S4. PubMed ID: 21989143 [TBL] [Abstract][Full Text] [Related]
56. Binpairs: utilization of Illumina paired-end information for improving efficiency of taxonomic binning of metagenomic sequences. Dutta A; Tandon D; Mohammed MH; Bose T; Mande SS PLoS One; 2014; 9(12):e114814. PubMed ID: 25551450 [TBL] [Abstract][Full Text] [Related]
57. DUDes: a top-down taxonomic profiler for metagenomics. Piro VC; Lindner MS; Renard BY Bioinformatics; 2016 Aug; 32(15):2272-80. PubMed ID: 27153591 [TBL] [Abstract][Full Text] [Related]
58. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data. Rahman MA; Rangwala H Bioinformatics; 2020 Jul; 36(Suppl_1):i39-i47. PubMed ID: 32657370 [TBL] [Abstract][Full Text] [Related]
59. Deep learning models for bacteria taxonomic classification of metagenomic data. Fiannaca A; La Paglia L; La Rosa M; Lo Bosco G; Renda G; Rizzo R; Gaglio S; Urso A BMC Bioinformatics; 2018 Jul; 19(Suppl 7):198. PubMed ID: 30066629 [TBL] [Abstract][Full Text] [Related]
60. An Improved Machine Learning-Based Approach to Assess the Microbial Diversity in Major North Indian River Ecosystems. Choudhury N; Sahu TK; Rao AR; Rout AK; Behera BK Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239442 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]