These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 39173473)
1. Experimental detection of marine plastic litter in surface waters by 405 nm LD-based fluorescence lidar. Cadondon J; Vallar E; Shiina T; Galvez MC Mar Pollut Bull; 2024 Oct; 207():116842. PubMed ID: 39173473 [TBL] [Abstract][Full Text] [Related]
2. First record of plastiglomerates, pyroplastics, and plasticrusts in South America. De-la-Torre GE; Pizarro-Ortega CI; Dioses-Salinas DC; Rakib MRJ; Ramos W; Pretell V; Ribeiro VV; Castro ÍB; Dobaradaran S Sci Total Environ; 2022 Aug; 833():155179. PubMed ID: 35421485 [TBL] [Abstract][Full Text] [Related]
3. Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris. O'Connor IA; Golsteijn L; Hendriks AJ Mar Pollut Bull; 2016 Dec; 113(1-2):17-24. PubMed ID: 27477069 [TBL] [Abstract][Full Text] [Related]
4. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Jung MR; Horgen FD; Orski SV; Rodriguez C V; Beers KL; Balazs GH; Jones TT; Work TM; Brignac KC; Royer SJ; Hyrenbach KD; Jensen BA; Lynch JM Mar Pollut Bull; 2018 Feb; 127():704-716. PubMed ID: 29475714 [TBL] [Abstract][Full Text] [Related]
5. A workflow for improving estimates of microplastic contamination in marine waters: A case study from North-Western Australia. Kroon F; Motti C; Talbot S; Sobral P; Puotinen M Environ Pollut; 2018 Jul; 238():26-38. PubMed ID: 29533881 [TBL] [Abstract][Full Text] [Related]
6. FTIR spectroscopy supported by statistical techniques for the structural characterization of plastic debris in the marine environment: Application to monitoring studies. Mecozzi M; Pietroletti M; Monakhova YB Mar Pollut Bull; 2016 May; 106(1-2):155-61. PubMed ID: 26997255 [TBL] [Abstract][Full Text] [Related]
7. Characterization of polyethylene terephthalate (PET) and polyamide (PA) true-to-life nanoplastics and their biological interactions. Ducoli S; Federici S; Cocca M; Gentile G; Zendrini A; Bergese P; Depero LE Environ Pollut; 2024 Feb; 343():123150. PubMed ID: 38103711 [TBL] [Abstract][Full Text] [Related]
8. Prevalence of microplastics in the marine waters of Qatar. Castillo AB; Al-Maslamani I; Obbard JP Mar Pollut Bull; 2016 Oct; 111(1-2):260-267. PubMed ID: 27389452 [TBL] [Abstract][Full Text] [Related]
9. Comparison of ATR-FTIR and NIR spectroscopy for identification of microplastics in biosolids. Circelli L; Cheng Z; Garwood E; Yuksel K; Di Iorio E; Angelico R; Colombo C Sci Total Environ; 2024 Mar; 916():170215. PubMed ID: 38262536 [TBL] [Abstract][Full Text] [Related]
10. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Rochman CM; Hoh E; Hentschel BT; Kaye S Environ Sci Technol; 2013 Feb; 47(3):1646-54. PubMed ID: 23270427 [TBL] [Abstract][Full Text] [Related]
11. Developing and testing a workflow to identify microplastics using near infrared hyperspectral imaging. Faltynkova A; Wagner M Chemosphere; 2023 Sep; 336():139186. PubMed ID: 37354961 [TBL] [Abstract][Full Text] [Related]
12. Differential scanning calorimetry (DSC): An important tool for polymer identification and characterization of plastic marine debris. Lynch JM; Corniuk RN; Brignac KC; Jung MR; Sellona K; Marchiani J; Weatherford W Environ Pollut; 2024 Apr; 346():123607. PubMed ID: 38382730 [TBL] [Abstract][Full Text] [Related]
13. Surface properties of beached plastics. Fotopoulou KN; Karapanagioti HK Environ Sci Pollut Res Int; 2015 Jul; 22(14):11022-32. PubMed ID: 25787219 [TBL] [Abstract][Full Text] [Related]
14. Microplastics analysis in Malaysian marine waters: A field study of Kuala Nerus and Kuantan. Khalik WMAWM; Ibrahim YS; Tuan Anuar S; Govindasamy S; Baharuddin NF Mar Pollut Bull; 2018 Oct; 135():451-457. PubMed ID: 30301058 [TBL] [Abstract][Full Text] [Related]
15. Temporal patterns of plastic contamination in surface waters at the SS Yongala shipwreck, Great Barrier Reef, Australia. Miller ME; Santana MFM; Carsique M; Motti CA; Hamann M; Kroon FJ Environ Pollut; 2022 Aug; 307():119545. PubMed ID: 35643289 [TBL] [Abstract][Full Text] [Related]
16. Microplastics in Kenya's marine nearshore surface waters: Current status. Kosore CM; Ojwang L; Maghanga J; Kamau J; Shilla D; Everaert G; Khan FR; Shashoua Y Mar Pollut Bull; 2022 Jun; 179():113710. PubMed ID: 35526380 [TBL] [Abstract][Full Text] [Related]
17. Leachability of microplastic from different plastic materials. Mortula MM; Atabay S; Fattah KP; Madbuly A J Environ Manage; 2021 Sep; 294():112995. PubMed ID: 34126529 [TBL] [Abstract][Full Text] [Related]
19. An optimized acidic digestion for the isolation of microplastics from biota-rich samples and cellulose acetate matrices. Tuttle E; Stubbins A Environ Pollut; 2023 Apr; 322():121198. PubMed ID: 36736813 [TBL] [Abstract][Full Text] [Related]
20. Microplastic pollution in the surface waters of the Bohai Sea, China. Zhang W; Zhang S; Wang J; Wang Y; Mu J; Wang P; Lin X; Ma D Environ Pollut; 2017 Dec; 231(Pt 1):541-548. PubMed ID: 28843202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]